Semiempirický model magnetického pole skvrn, pozorovaných ve spektrálních čarách Fel a Mgl

M. Klvaňa, Astronomický ústav Akademie věd České republiky, observatoř Ondřejov, Česká republika, mklvana @asu.cas.cz T. I. Kaltman, St. Petersburgská filiálka Speciální astrofyzikální observatoře, Ruská akademie věd, Rusko, kti @saoran.spb.su V. Bumba, Astronomický ústav Akademie věd České republiky, observatoř Ondřejov, Česká republika, bumba @asu.cas.cz

Abstrakt

V práci předkládáme metodu určení hloubky zdroje magnetického pole pod sluneční skvrnou, založenou na semiempirickém modelování s využitím prostorové konfigurace magnetického pole dipólového modelu. Dipólovou aproximaci aplikujeme na podélnou složku magnetického pole, měřeného ve spektrálních čarách FeI-5253.47A a MgI-5172.7A, formujících se v různých výškách sluneční atmosféry. Uvádíme hloubky zdrojů magnetických polí pro některé skvrny aktivních oblastí NOAA 9503, 9504, 9505 a 9506 ze dne 21.06.2001a komentujeme získané výsledky.

1. ÚVOD

Magnetografická měření ve dvou spektrálních čarách poskytují informace o magnetických a rychlostních polích ve dvou odlišných výškách sluneční atmosféry. Zajímavé efekty, pozorované v čáře MgI 5172,7A nás v minulém roce přivedly k systematickému měření aktivních oblastí ve dvou spektrálních čarách ve standardní fotosférické čáře FeI 5253.47 A, jejíž vznik se odhaduje ve výšce cca 300 km a v čáře MgI 5172.7 A, která vzniká v dolní chromosféře ve výšce cca 700 km. Tento výškový rozdíl se pokusíme využít pro upřesnění konfigurace magnetického pole nad skvrnou. Při modelování magnetického pole v okolí skvrny používáme dipólovou aproximaci, která při analýze vlastností magnetických polí, pozorovaných ve skvrnách, dává překvapivě dobré výsledky (Kaltman et all. 2000).

2. DIPÓLOVÁ APROXIMACE

Vlastnosti dipólového modelu magnetického pole jsme spolu se základními rovnicemi analyzovali v práci Kaltman et all. 2000. Struktura magnetického pole dipólu je popsána vzorci (1) až (5). Osa z prochází středem skvrny a je kolmá ke slunečnímu povrchu. Osa x leží v rovině, procházející osou z a středem slunečního disku. Kladný směr osy z směřuje nad sluneční povrch a u osy x vždy na střed slunečního disku. Počátek souřadnicového systému leží ve středu magnetického dipólu.

$$H_{x} = H_{phot} \frac{1}{2} z_{dip}^{3} \frac{3zx}{(\sqrt{x^{2} + y^{2} + z^{2}})^{5}}$$
(1)

$$H_{y} = H_{phot} \frac{1}{2} z_{dip}^{3} \frac{3zy}{(\sqrt{x^{2} + y^{2} + z^{2}})^{5}}$$
(2)

$$H_{z} = H_{phot} \frac{1}{2} z_{dip}^{3} \frac{2z^{2} - x^{2} - y^{2}}{\left(\sqrt{x^{2} + y^{2} + z^{2}}\right)^{5}}$$
(3)

$$H(x, y, z) = \sqrt{H_x^2 + H_y^2 + H_z^2}$$
(4)

$$z = z_{dip} + h \tag{5}$$

kde H_{x} , H_{y} , H_{z} jsou komponenty vektoru magnetického pole H(x,y,z) dipólu v libovolném bodě (x,y,z) prostoru, H_{phot} - magnetické pole ve středu dipólu na úrovni hladiny, v níž se formuje spektrální čára, použitá při měření, Z_{dip} - hloubka ponoření dipólu pod úroveň fotosféry a h – výška bodu (x,y,z) nad úrovní hladiny, v níž se formuje spektrální čára. Dipólová aproximace je osově symetrická a proto je pro některé účely vhodné použít v rovnicích (1) - (4)cylindrický souřadnicový systém:

$$H_{r} = \frac{H_{phot}}{2} \frac{3\sqrt{Q}}{(1+Q)^{2}} \sqrt{(1+Q)} \frac{z_{dip}}{z}^{3}$$
(6)

$$H_{z} = \frac{H_{phot}}{2} \frac{(1+Q)^{2}}{(1+Q)^{2}} \left(\frac{z_{dip}}{z} \right)^{3}$$
(7)

$$H_{rz} = \frac{H_{phot}}{2} \frac{\sqrt{(4+Q)}}{(1+Q)^2} \left(\frac{z_{dip}}{z}\right)^3$$
(8)

$$Q = \left(\frac{r}{z}\right)^2 \quad (9)$$

Parametr Q byl zaveden pro větší přehlednost výrazů.

Vzhledem k tomu, že měříme podélnou komponentu magnetického pole, bude pro nás užitečná závislost průmětu celkového magnetického pole dipólu H_{rz} v libovolném bodě do pozorovacího směru $H_{lon.}$ Podle obr.1 můžeme zapsat následující rovnice:

$$H_x = H_r \cos\varphi \tag{10}$$

$$H_{xz} = \sqrt{H_x^2 + H_z^2}$$
(11)

$$H_{lon} = H_{xz} \cos \left(\varphi - \theta \right)$$
 (12)

$$H_x = H_z t g \alpha \tag{13}$$

Rovnici (13) je možno s použitím výše uvedených rovnic transformovat do tvaru

$$tg\alpha = 3\frac{\sqrt{Q}}{2-Q}\cos\varphi \tag{13A}$$

Úpravou rovnice (12) dostáváme výraz pro podélnou složku vektoru magnetického pole dipólu H_{lon} :

$$H_{lon} = \frac{H_{phot}}{2} \frac{\langle Q - Q \rangle \cos\theta + 3 \sqrt{Q} \rangle \cos\phi \sin\theta}{\left(1 + Q\right)^2 \sqrt{\left(1 + Q\right)}} \left(\frac{z_{dip}}{z}\right)^3 (14)$$

Z rovnic (9) a (13A) vyplývá, že pro $0 \le Q \le 2$ bude $0 \le \alpha \le 90^{\circ}$ a $0 \le r \le \sqrt{2} (d_{dip} + h)$. Pro Q > 2, tzn. $r > \sqrt{2} (d_{dip} + h)$ bude $\alpha \ge 90^{\circ}$ a vektory magnetického pole dipólu budou směřovat pod rovinu sluneční skvrny (pro H_{phot} >0). Hodnota Q je vždy větší než nula.

Obr.1: Prostorové rozložení vektoru dipólového modelu magnetického pole ve skvrně H_{rz} do jeho složek, včetně projekce do směru pozorování H_{lon} . Osa vektoru H_{rz} protíná osu z a H_{lon} leží vždy v rovině xz.

3. URČENÍ *H*_{phot} Z NAMĚŘENÝCH HODNOT MAGNETICKÉHO POLE VE SKVRNĚ

Označme intenzitu magnetického pole na ose z dipólu pro h=0 jako H_{phot} . V tomto bodě je vektor magnetického pole kolmý ke slunečnímu povrchu a jeho velikost je maximální. Reálná měření však mohou mít maximální hodnotu magnetického pole ve skvrně posunutu mimo střed skvrny jednak vlivem projekce, pokud skvrna není na středu disku, ale také vlastní strukturou skvrny nebo deformací obrazu. K určení H_{phot} z naměřených dat můžeme použít jednu z následujících metod:

3.1. PRŮMĚT MAGNETICKÉHO POLE DIPÓLOVÉHO MODELU DO SMĚRU POZOROVÁNÍ

Na základě dipólového modelu můžeme z rovnice (14) vypočítat podélnou složku magnetického pole v libovolném bodě skvrny. Maximální hodnota podélné složky magnetického pole H_m bude v tomto případě ležet v rovině, procházející osou z a středem slunečního disku, tzn. $\varphi = 0$. Závislost H_m na úhlové vzdálenosti od středu slunečního disku θ je uvedena na obr.2. Pomocí křivky H_m , získané numerickým řešením rovnice (14), můžeme pak z maximální hodnoty podélné složky magnetického pole, naměřené ve skvrně, určit (pro známý úhel θ) hledanou hodnotu H_{phot1}.

Obr.2: Průběhy křivek H_m a H_c , normovaných na H_{phob} v závislosti na úhlové vzdálenosti θ magnetického dipólu od středu slunečního disku. Zobrazeny jsou zde maximální velikost průmětu vektoru magnetického pole dipólu do směru pozorování (křivka H_m) a kosinový průmět vektoru H_{phot} do směru pozorování (křivka H_c)

Tato metoda, vycházející z maximální hodnoty magnetického pole, naměřené ve skvrně, dává většinou větší hodnoty H_{phot} , než metoda následující. Domníváme se, že její výsledky jsou bližší realitě a proto ji v této práci při výpočtu H_{phot} používáme.

3.2. KOSINOVÝ ZÁKON

Tento zákon umožňuje jednoduchým způsobem zhruba určit maximální hodnotu magnetického pole ve skvrně H_{phot} z jeho naměřené podélné složky H_c ve středu skvrny. Za H_c dosazujeme hodnotu podélné složky magnetického pole ve **středu skvrny**, která může být menší než maximální naměřená hodnota ve skvrně. Tento způsob můžeme použít, pokud vektor magnetického pole ve středu skvrny je kolmý ke slunečnímu povrchu, jeho amplituda je zde maximální a dostatečně rychle klesá k okrajům skvrny, což platí hlavně u symetrických skvrn. Podle kosinového zákona bude pro skvrnu, posunutou od středu disku o poziční úhel θ , platit rovnice:

$$H_c = H_{phot2} \cos\theta \tag{15}$$

kde H_c je průmět vektoru H_{phot} , kolmého ke slunečnímu povrchu, do směru pozorování. V praxi se však velmi často setkáváme s případy, kdy odchylky tvaru skvrny od symetrického stavu jsou podstatné. Důsledkem je pak zanížená hodnota H_{phot2} , která může být i menší, než maximální hodnota magnetického pole, ve skvrně naměřená.

4. VLASTNOSTI DIPÓLOVÉ APROXIMACE

4.1. ZMĚNA INTENZITY MAG. POLE S VÝŠKOU NA OSE DIPÓLU

Dosazením r = 0 a rovnice (5) do výrazu (7) dostaneme vztah pro výpočet intenzity magnetického pole na ose dipólu H_h ve výšce h nad hladinou, v níž se formuje spektrální čára, použitá při měření H_{phot} (viz Obr.3):

$$H_{h} = H_{phot} \left(\frac{z_{dip}}{h + z_{dip}} \right)^{3}$$
(16)

Důležitým parametrem je zde hloubka ponoření dipólu Z_{dip} , pomocí níž můžeme měnit konfiguraci magnetického pole, modelovaného nad pozorovanou skvrnou. Je však třeba si uvědomit, že při změně Z_{dip} celý systém vektorového pole nad skvrnou **se pouze posouvá** vzhledem k hladině formování zvolené spektrální čáry **a nedochází ke změnám** topologie vlastního dipólového pole.

Obr.3: Zobrazení základních použitých veličin. Maximální výšky konkrétních siločar dipólu leží na kuželové ploše, tvořené rotací přímky Hz=0 kolem osy z; H_{phot} hodnota magnetického pole na ose dipólu (velikost mag. pole pro r = 0, h =0,) ve spektrální čáře, použité při měření.

Ze vzorce (16) je zřejmé, že pro konstantní H_{phot} se zvětšování hloubky dipólu Z_{dip} projeví zvětšením intenzity magnetického pole H_h v téže výšce h nad fotosférou. Změnu hloubky dipólu Z_{dip} je možno využít při fitování vertikálního průběhu magnetického svazku pole skvrny a naopak při měření magnetického pole ve dvou různých výškách můžeme určit hloubku ponoření magnetického dipólu.

4.2. TOPOLOGIE NULOVÉ ČÁRY VERTIKÁL-NÍHO MAGNETICKÉHO POLE DIPÓLU

Předpokládejme, že v určité vzdálenosti R_h od středu skvrny je vektor magnetického pole horizontální, tzn., že vertikální složka vektoru $H_z = 0$. Tato podmínka je v rovnici (7) splněna v případě, že (2-Q) = 0, z čehož po dosazení výrazů (5) a (9) a záměnou *r* za r_o dostaneme vztah mezi výškou *h* a nulovým poloměrem skvrny r_o , který vymezuje oblast skvrny v magnetickém poli ohraničenou body, v nichž $H_z = 0$.

$$z_{dip} + h = \frac{r_0}{\sqrt{2}} \tag{17}$$

Z tohoto obecně platného výrazu je zřejmé, že v dipólovém modelu maximální výšky jednotlivých siločar magnetického pole leží na kuželové ploše, tvořené rotací přímky kolem osy z. Tato přímka prochází středem dipólu a s osou z svírá úhel cca 55° (viz obr.3).

Důležitou vlastností, vyplývající ze vzorce (17) je lineární závislost mezi výškou h a poloměrem r_o , z níž je možno zdánlivě snadno určit hloubku uložení magnetického dipólu Z_{dip} v závislosti na výšce h. Pokud nás zajímá hloubka dipólu pod hladinou,

Pokud nás zajímá hloubka dipólu pod hladinou, k níž vztahujeme polohu dipólu (např. hladina formování konkretní spektrální čáry nebo kontinuum spektra), upravíme vzorec (17) dosazením h=0 a záměnou poloměru r_o za R_o (viz obr.3).

$$z_{dip0} = \frac{R_0}{\sqrt{2}} \tag{18}$$

5. METODY URČENÍ POLOHY DIPÓLU Zdip

5.1. METODA A - POUŽIT OBRAZ SKVRNY V KONTINUU SPEKTRA

Tento způsob určení Z_{dip} vychází přímo z rovnice (18). Komplikací je zde určení poloměru R_{o} protože se jedná o oblast s malými magnetickými poli, která jsou narušována poli, sousedícími se skvrnou.

Podle Kawakami (1983) můžeme poloměr R_o určit z poloměru obrazu skvrny v kontinuu spektra R_{phot} na základě úměrnosti $R_o = 1.3 R_{phot}$. Po dosazení do vzorce (18) dostaneme výraz pro výpočet hloubky dipólu pod hladinou kontinua spektra Z_{dip1} :

$$Z_{dip1} = \frac{1.3R_{phot}}{\sqrt{2}} \tag{19}$$

Přesnost odečtu R_{phot} zvýšíme výpočtem hledaného poloměru z kruhové plochy stejné velikosti jako je změřená plocha skvrny, korigovaná na úhlovou vzdálenost od středu slunečního disku θ . Tímto způsobem můžeme zároveň zkompenzovat i malé deformace reálné skvrny. Konečný vzorec pro výpočet hloubky dipólu touto metodou pak bude:

$$Z_{dip1} = 1.3 \sqrt{\frac{S_{phot}}{2\pi \cos\theta}}$$
(20)

kde S_{phot} je plocha skvrny, změřená v kontinuu spektra v jednotkách plošných a Z_{dip1} v jednotkách délkových stejného typu. Pro spektrální čáry, vznikající v různých výškách dává výraz (20) stejné hodnoty Z_{dip1} , protože se hloubka dipólu Z_{dip1} vztahuje ke hladině kontinua spektra, která je pro všechny čáry stejná.

Jak vyplývá ze vzorce (19), hloubky dipólu Zdip, nalezené touto metodou, jsou úměrné velikosti skvrn. Pro všechny tři největší skvrny oblasti vychází Zdip v rozmezí 16 - 21 tisíc km pod hladinou kontinua fotosféry.

5.2. METODA B - POUŽITO MAGNETICKÉ POLE SKVRNY

Ze známého poloměru nulové čáry magnetického pole kolem skvrny můžeme přímo podle vzorce (18) určit hloubku magnetického dipólu. V okolí skvrny se však téměř vždy nacházejí magnetická pole, která jsou součástí aktivní oblasti a znemožňují určit nulovou hranici skvrny. Proto tato zdánlivě jednoduchá metoda určení hloubky dipólu se v praxi značně komplikuje a většinou není použitelná.

Přijatelným řešením je místo nulové čáry použít izočáru podstatně větší intenzity magnetického pole, která již nebude tolik narušena okolními magnetickými poli. Numerickým řešením rovnice (14) pro h = 0najdeme velikost plochy S_{H} , kterou vymezuje zvolená izočára H_{ref} . Použijeme přibližné řešení, v němž plochu S_{H} aproximujeme elipsou s poloosami p_x a p_y . Poloosa p_y nezávisí na úhlu θ , protože je kolmá ke směru na střed disku a bude tedy stejná, jako poloosa p_x pro $\theta=0$.

Numerickým řešením rovnice (14) pro $\theta=0$, $\varphi=0$, h=0 a zvolený poměr H_{ref} / H_{phot} nalezneme hodnotu $Q=Q_0$ (viz obr.4). Aplikací vzorce (9) pro h=0 můžeme zapsat:

$$\sqrt{Q_0} = \frac{p_y}{z_{dip}} \tag{21}$$

a analogicky, pro aktuální úhel θ , nalezneme hodnoty Q_A a Q_B . Podle obr.4 za použití vzorce (9) zapíšeme výraz:

$$\sqrt{Q_B} - \sqrt{Q_A} = \frac{2p_x}{z_{dip}} \tag{22}$$

Plocha elipsy, aproximující plochu hladiny mag. pole dipólu pak bude:

$$S_{Hd} = \pi . p_x p_y \tag{23}$$

Vypočtená plocha elipsy, uzavřená izočarou podélné komponenty mag. pole dipólu S_{Hd} , se bude rovnat ploše, uzavřené toutéž izočarou S_{Hm} , v zobrazení podélné komponenty mag. pole, naměřené ve skvrně:

$$S_{Hm} = S_{Hd} \tag{24}$$

Dosazením (21), (22) a (23) do (24) dostaneme výraz pro výpočet hloubky dipólu pod hladinou formování spektrální čáry, použité při měření magnetického pole:

Obr.4: Závislost podélné složky magnetického pole dipólu v rovině skvrny na vzdálenosti od osy dipólu, procházejícího středem skvrny: křivka 1 – podél libovolné přímky, procházející středem skvrny, která leží ve středu slunečního disku, křivka 2 – podél přímky, spojující střed slunečního disku se středem skvrny. Poloha a vzhled křivky 2 je dán úhlovou vzdáleností θ středu skvrny od středu disku. Stejně, jako u reálných skvrn, se s rostoucím úhlem θ maximum křivky snižuje a posouvá směrem ke středu slunečního disku.

5.3 METODA C - POUŽITO MĚŘENÍ MAGNET. POLE VE DVOU SPEKTRÁLNÍCH ČARÁCH

Vzorec (16) upravíme pro spektrální čáry MgI a FeI, vznikající ve dvou různých výškách h_{FeI} a h_{MgI}:

$$H_{Mg} = H_{Fe} \left(\frac{z_{dip}}{\Delta h + z_{dip}} \right)^3$$
(26)

kde

$$\Delta h = h_{Mg} - h_{Fe} \tag{27}$$

 z_{dip} je hloubka dipólu pod hladinou, v níž vzniká čára FeI, H_{Mg} a H_{Fe} jsou intenzity magnetického pole na ose *z* ve středu skvrny v různých výškových hladinách obou spektrálních čar. Úpravou výrazu (26) dostaneme vzorec pro výpočet hloubky dipólu pod hladinou tvorby čáry FeI:

$$Z_{dip3} = \frac{\Delta h}{\sqrt[3]{\frac{H_{Fe}}{H_{Mg}}} - 1}$$
(28)

Podle kosinového zákona nebo podle vektorového pole dipólového modelu nalezneme H_{Fe} a H_{Mg} . Protože je pro obě měření vzdálenost skvrny od středu slunečního disku téměř stejná, vede výpočet v obou případech k násobení obou maximálních naměřených hodnot stejnou konstantou. Proto můžeme v tomto případě použít přímo obě maximální naměřené hodnoty longitudinálního magnetického pole a celý výpočet ignorovat, aniž bychom se dopustili nějaké nepřesnosti.

Obr. 5: Intenzity magnetického pole H_{Mg} a H_{Fe} na ose z pro dvě výškově rozdílné hladiny formování spektrálních čar MgI a FeI. Osa z je současně osou symetrie skvrny dipólového modelu.

6. POUŽITÝ POZOROVACÍ MATERIÁL

Výchozím experimentálním materiálem pro tuto práci byla měření podélné složky magnetického pole a jasu v kontinuu spektra, získaná fotoelektickým magnetografem observatoře v Ondřejově. Tatáž část slunečního disku s aktivními oblastmi NOAA 9503, 9504, 9505 a 9506 byla měřena nejdříve ve spektrální čáře MgI - 5172,7A a bezprostředně poté následovalo měření v čáře FeI - 5253,47A. Pozorovací podmínky byly velmi dobré, v mapách jsou rozlišitelné detaily meší než 3 obl.sec. Základní informace o obou měřeních jsou uvedeny přímo u magnetografických map. V jasových mapách jsou čísly označeny skvrny, pro něž byly provedeny výpočty hloubky uložení magnetického dipólu. Orientace všech map - sever nahoře, východ vlevo.

ONDREJOU OBSERVATORY PHOTOCRAW(CONT.) Date: 062101-1 Time: 06:16:44 - 06:52:12 UI Region: 9505/04/03 File: 062201MC.1 X:1 - 130 Y:68 - 105 Magnification: 4 Lin.Scale: 50 150 250 350 450 550 (%/10)

Obr.6: Izočáry jasu v kontinuu spektra, normované do rozsahu 0 (nejsvětlejší) až 1000 (nejtemnější), vykreslené v uvedených hladinách pro blízké kontinuum MgI 5172.7A.

ONDREJOV OBSERVATORY PHOTOGRAM(CONT.) Date: 662101-2 Time: 07:06:08 - 07:35:59 UT Region: 9505/04/03 File: 66210105.2 X:1 - 138 Y:68 - 106 Magnification: 4 Lin.Scale: 50 150 250 350 450 550 (z/10)

Obr.7: Izočáry jasu v kontinuu spektra, normované do rozsahu 0 (nejsvětlejší) až 1000 (nejtemnější), vykreslené v uvedených hladinách pro blízké kontinuum FeI 5253.47A.

7. ANALÝZA VÝSLEDKŮ

Metoda A: Plochu skvrn S_{phot} v Tabulce1 jsme určovali z magnetografických registrací jasu kontinua spektra, blízkého použité spektrální čáře. Podle fotosférického snímku oblasti v bílém světle jsme v normovaných magnetografických datech vykreslili hladinu, odpovídající nejlépe obrysům skvrn v bílém světle (I = $0.86 I_{phot}$, kde I_{phot} je normovaná hodnota jasu, mající mimo skvrny hodnotu 10000).

 ONDBELIOU OBSERVATORY MAGNETOGRAM(R+B) 5172.7
 Calibration for 5172.7

 Date: 662101-1
 Time: 66:16:144
 -06:52:12
 UT
 Region: 9505/04/03

 File: 062101M1.1
 X: 1
 -138
 Y: 68
 -105
 Magnification: 4

 Parabol.Scale:
 5
 10
 25
 50
 85
 130
 185
 250
 325
 (mT)

Obr.8: Podélná složka magnetického pole v čáře MgI 5172.7A, stanovená z obou křídel spektrální čáry.

 ONDREJOU OBSERVATORY MAGNETOGRAM(R-B)
 5253.47
 Calibration for 5253.47

 Date:
 662101-2
 Time:
 07:00:00
 -07:35:59
 UT
 Region:
 505:04/03

 Pile:
 062101H1.2
 X:1
 138
 Y:68
 106
 Magnification:
 4

 Parabol.Scale:
 5
 10
 25
 50
 85
 130
 185
 250
 325
 (nT)

Obr.9: Podélná složka magnetického pole v čáře FeI 5253.47A, stanovená z obou křídel spektrální čáry

Je vidět, že plochy jednotlivých skvrn v obou měřeních se poněkud liší (cca 1.5%), což je pravděpodobně způsobeno změněnými pozorovacími podmínkami, i když změna kvality obrazu na registracích není patrná. Citlivost metody na rušivé vlivy jsme ověřili posuvem vykreslované hladiny (I=0.88 I_{phot}) a domníváme se, že

Číslo	Spektral.	úhel θ	Sphot	Z _{dip1}	Průměr (km)	Společné parametry
skvrny	čára		(px)	(km)	$arnothing Z_{dip1}$	
1	MgI	17.2	39887	16426	16375	
	FeI	17.5	39328	16324		
3	MgI	21.9	60664	21181	20640	Plocha skvrny pro I = $0.86 I_{phot}$
	FeI	22.5	57750	20098		lineární zvětšení 155 km/px
5	MgI	33.9	32602	15932	16081	
	FeI	34.7	33515	16230		
1	MgI	17.2	42526	16961	16910	
	FeI	17.5	41946	16859		Plocha skvrny pro I = $0.88 I_{phot}$
3	MgI	21.9	62025	20784	20779	lineární zvětšení 155 km/px
	FeI	22.5	61694	20773		

 Tabulka 1 - Metoda A:
 Výpočet hloubky dipólu podle vzorce (20)

 Tabulka 2 - Metoda B:
 Výpočet hloubky dipólu podle vzorce (25)

Skvrna	Sp.	Data	H _{ref}	Hladina	\sqrt{O}	\sqrt{O}	$\sqrt{O_{\pi}}$	Plocha	Z _{dip2}	Z _{dip2}	Δh
	čára			H _{ref} / H _{phot1}	$\nabla \boldsymbol{\varkappa}_A$	$\nabla \boldsymbol{\varkappa}_B$	$\nabla \Sigma_0$	S _{Hm}	pixly	km	km
			400	0.1104	-0.755	1.12	0.945	40989	121.35	18809	1804
		H _{lon}	800	0.2208	-0.615	0.895	0.765	23863	114.68	17775	1173
	MgI		1600	0.4415	-0.430	0.640	0.545	7404	89.92	13935	890
1			2400	0.6623	-0.275	0.450	0.375	2192	71.64	10410	1797
		Společné		$H_{max} = 3523Gs; H_{phot1} = 3624Gs; \theta = 17.2^{\circ}; zvětšení = 14; \varnothing Z_{dip} = 15232 \text{ km}$							
		parametry		Hss = 2221Gs; H_{phot2} = 2325Gs; lineární zvětšení 155 km/px							
		H _{lon}	400	0.1060	-0.760	1.135	0.955	34218	109.71	17005	
			800	0.2119	-0.625	0.910	0.780	21577	107.11	16602	
	FeI		1600	0.4238	-0.440	0.655	0.560	6822	84.16	13045	
			2400	0.6358	-0.290	0.475	0.395	1466	55.58	8613	
		Společné		$H_{max} = 3666Gs; H_{phot1} = 3775Gs; \theta = 17.5^{\circ}; zvětšení = 14; ØZ_{dip} = 13816 km$							
		para	metry	Hss = 2183G	s; H _{phot2} =	= 2289Gs	; lineární	zvětšení	155 km/p	х	
			400	0.1331	-0.670	1.105	0.900	61793	156.92	24323	2536
	MgI	H_{lon}	800	0.2662	-0.530	0.860	0.710	39708	160.05	24808	3192
			1600	0.5324	-0.330	0.575	0.475	11839	132.41	20524	4742
			2400	0.7987	-0.140	0.350	0.275	4762	150.00	23248	10075
_		Společné		$H_{max} = 2870Gs; H_{phot1} = 3005Gs; \theta = 21.9^{\circ}; zvětšení = 14; \emptyset Z_{dip} = 23226 \text{ km}$							
3		para	metry	Hss = 2054 Gs; H _{phot2} = 2214 Gs; lineární zvětšení 155 km/px							
	FeI	H _{lon}	400	0.1182	-0.685	1.150	0.930	52958	140.55	21787	
			800	0.2364	-0.555	0.905	0.745	33231	139.46	21616	
			1600	0.4728	-0.365	0.630	0.520	8425	101.81	15782	
			2400	0.7092	-0.205	0.430	0.345	2486	85.00	13175	
		Společné $H_{max} = 3325$ Gs; $H_{phot1} = 3384$ Gs; $\theta = 22.5^{\circ}$; zvětšení = 14 ; $\varnothing z_d$					$\emptyset Z_{dip} = 18$	3090 km			
		para	metry	$H_{ss} = 2074 G_s; H_{phot2} = 2245 G_s; lineární zvětšení 155 km/px$							
			400	0.1553	-0.520	1.135	0.860	28929	113.75	17631	-8
	MgI		800	0.3107	-0.385	0.860	0.665	18695	119.90	18585	501
5		H _{lon}	1600	0.6214	-0.175	0.530	0.405	4530	100.50	15578	4517
			2400	0.9320	0	0	0				
		Společné		$H_{max} = 2305Gs; H_{phot1} = 2575Gs; \theta = 33.9^{\circ}; zvětšení = 14; \emptyset Z_{dip} = 17265 \text{ km}$							
		para	metry	Hss = 2107Gs; H _{phot2} = 2539Gs; lineární zvětšení 155 km/px							
	FeI		400	0.1693	-0.495	1.110	0.840	27426	113.81	17639	
			800	0.3387	-0.360	0.825	0.635	16090	116.67	18084	
		H _{lon}	1600	0.6774	-0.125	0.475	0.365	1752	71.37	11061	
			2400	1.0161	0	0	0				
		Společné		$H_{max} = 2102Gs; H_{phot1} = 2362Gs; \theta = 34.7^{\circ}; zvětšení = 14; ØZ_{dip} = 15595 km$							
		para	metry	Hss = 1749Gs; H _{phot2} = 2127Gs; lineární zvětšení 155 km/px							

tato metoda výpočtu Z_{dip} podle vzorce (20) je poměrně stabilní. Hloubka dipólu je přímo úměrná poloměru skvrny a pro naše skvny byla určena od 16 do 21 tisíc km pod úrovní klidné fotosféry. Určení výškového rozdílu hladin z výsledků v obou čarách není možné, protože se v této metodě hloubka dipólu odečítá od téže hladiny klidné fotosféry a ne od různých hladin, v nichž jsou generovány obě spektrální čary.

Metoda B: Parametry výpočtu Z_{dip} podle vzorce (25) jsou pro tytéž tři skvrny uvedeny v Tabulce 2. Referenční hladiny podélné složky vektoru magnetického pole H_{ref} jsou voleny tak, aby rovnoměrně pokrývaly rozsah měřených magnetických polí skvrn s vyloučením nízkých a vysokých hodnot, ovlivněných okolními magnetickými poli a rozptýleným světlem. Na základě numerického výpočtu rovnice (15) jsme nalezli potřebné hodnoty (viz obr.4), z měření určili plochu S_{hm} pro tutéž referenční hladinu a vypočetli hloubku dipólu pod hladinou formování použité spektrální čáry. Pokud by dipólový model přesně odpovídal struktuře skvrny, měly by být pro tutéž skvrnu a spektrální čáru hloubky dipólů, vypočtené pro různé referenční hladiny, přibližně stejné. Průměrné hodnoty Zdip se pohybují v rozmezí od 23200 do 13800 km. Všechny skvrny mají, tak, jak to má být, Z_{dip} pro čáru MgI větší, než pro čáru FeI. Rozptyl hodnot, které vidíme pro jednotlivé hladiny mag. pole v tabulkách, mohou být způsobeny poměrně výraznou nesymetrii reálných skvrn.

Z rozdílu hloubek dipólů v obou spektrálních čarách můžeme teoreticky pro každou skvrnu zjistit výškový rozdíl hladin Δh, v nichž jsou obě spektrální čáry generovány. Rozptyl ve vypočtených hloubkách je však tak velký, že prakticky neodpovídá realitě. Nemůžeme se však příliš divit, vždyť podle přímkové závislosti na obr.3 mezi poloměrem skvrny a výškou h nad skvrnou, bude, jak vyplývá z rovnice (17), přírůstek poloměru mag. pole skvrny v čáře MgI vůči čáře FeI pouze 566 km, což není ani 1 obl.sec. Znamená to, že pro určení Δh metodou B bychom se museli pohybovat v přesnostech alespoň desetin obloukové sekundy.

Metoda C: Hloubky dipólu, vypočtené podle vzorce (28), jsou uvedeny **Tabulce 3**. Rozptyl hodnot Z_{dip} podle této metody je ze všech použitých metod největší. Z výsledků vidíme, že se zvětšujícím se rozdílem v maximálních hodnotách magnetického pole, naměřených v čáře FeI a MgI se zvětšuje hloubka dipólu pod hladinou tvorby spektrální čáry FeI.

Z dipólového modelu obecně vyplývá, že magnetické pole, naměřené ve spektrální čáře, vznikající ve vyšší hladině, by mělo být menší, než pole, měřené v nižší hladině. Pokud u skvrny číslo 5, dostáváme zápornou hodnotu Z_{dip} , dalo by se to napravit změnou znaménka Δh . Znamenalo by to ovšem, že hladina čáry MgI se nachází pod hladinou FeI a to odporuje našim dosavadním představám. Je jasné, že naměřené maximální hodnoty podélné složky magnetického pole ve skvrně jsou závislé na pozorovacích podmínkách a struktuře skvrny a snadno může dojít k chybné interpretaci.

Skvrna	H _{maxMg}	H _{maxFe}	Z _{dip3}				
1	3523	3666	19907				
3	2870	3325	5239				
5	2305	2102	-8879				
Společné parametry: $\Delta h = 400 \text{ km}$							

Pokud chceme v našem případě zachovat $\Delta h = 400$ km a $Z_{dip} = 20000$ km, měla by být podle (28) pro $H_{maxFe} = 3666$ naměřená hodnota $H_{maxMg} = 3455$, tzn. rozdíl 211 Gs. Abychom byli schopni spolehlivě tento rozdíl změřit, bylo by nutné měřit magnetické pole s reprodukovatelností alespoň 10 Gs, tzn. 0.3%, což není v běžném měřícím režimu reálné.

8. SOUHRN

Metoda A je nejjednodušší a zdánlivě nejméně se u ní projevuje vliv kvality dat. Nebere však do úvahy vlastnosti měření v různých spektrálních čarách a proto není možno přesnost výsledku testovat na základě jejich výškových rozdílů Δ h. Hloubka zdroje je přímo úměrná velikosti obrazu skvrny ve fotosféře a u našich skvrn se pohybovala v rozmezí od 16 do 21 tisíc km.

Metoda B je výpočetně náročná a její výsledky je možno, při použití dvou spektrálních čar, formujících se v různých výškách, ověřovat na základě jejich výškových rozdílů Δ h. Ukazuje se však, že tato metoda je velmi citlivá na kvalitu pozorování a pro dobrý souhlas mezi zjištěnými hloubkami zdroje a výškovým rozdílem Δ h vyžaduje rozlišení 0.1 obloukové sekundy. Přesto naše výsledky v rozmezí středních hloubek zdroje od 16 do 23 tisíc km celkem dobře korespondují s výsledky metody A pro jednotlivé skvrny.

Metoda C je velmi jednoduchá. Stejně jako metoda B dovoluje ověřovat výsledky na základě výškových rozdílů Δ h ve formování dvou spektrálních čar. Pro dobrý souhlas mezi hloubkami zdroje a hodnotou Δ h je třeba zajistit reprodukovatelnost v měření magnetického pole alespoň 0.3%, což vyžaduje speciální měření. Výsledky metody C jsou v našem případě zatíženy značnou chybou a nelze je použít.

9. ZÁVĚR

Hloubka magnetického zdroje pod sluneční skvrnou je podle našich výsledků úměrná velikosti skvrny a u námi proměřených skvrn se pohybuje v rozpětí 16 až 23 tisíc kilometrů.

Poděkování

Tato práce byla realizována díky grantovým projektům GAČR 205/01/0658, GAAVČR A3003903, Klíčovému projektu AVČR K2043105 a grantu RFBR 02-02-06692

LITERATURA

Kaltman T.I., Klvaňa M., Bumba V., 2000: Zborník referátov z 15.celoštátného slnečného seminára, 51-56
Kawakami H.,1983: Publ. Astron. Soc. Japan 35, 459-489