Numerical Heliospheric Code ENLIL and Space Weather

Dusan Odstrcil

George Mason University & NASA/GSFC/Space Weather Lab

ISWI Summer School in Space Science Tatranska Lomnica, Slovakia August 21-27, 2011

OUTLINE

- Space Weather Models
- Heliospheric Simulations and ENLIL
- Simulation of Background Solar Wind
- Application of Cone Models
- Interpretation of White-Light Observations
- Need for Ensemble Modeling
- Output for Solar Energetic Particles
- Run-on-Request Service at CCMC

Space Weather Models

Space Weather Models hosted by NASA/CCMC

Coupled Physics-Based Model

[flowchart from the Center for Integrated Space Weather Modeling (CISM BU); Similar project is the Space Weather Modeling Framework (SWMF Umich)]

Community Coordinated Modeling Center (CCMC)

Multi-Agency Facility at NASA/GSFC

>700 CPU Beowulf system, sponsored by NASA, NSF, started by AF/XOW investment

NASA, DoD and NOAA

..through partnering with the international modeling community

Space Weather Analysis Facility

NOAA Space Weather Prediction Center (SPWC) and National Center for Environmental Predictions (NCEP)

NOAA National Weather Service Space Weather Prediction Center

NOAA/SWPC Operational forecasting 24/7 service WSA, CME fitting, visualization, forecasting products, archiving (Boulder, CO)

NOAA/NCEP

Operational supercomputing IBM 156 Power6 32-way nodes, 4,992 processors @ 4.7GHz

Stratus – primary (Gaithersburg, MD) Cirrus – backup (Fairmont, WV)

Heliospheric Simulations and ENLIL

ENLIL – 3-D Solar Wind Model

- Mathematical Description:
 - ideal magnetohydrodynamic (MHD) approximation
 - volumetric heating
 - additional equations for injected mass and polarity tracking
- <u>Method of Solution:</u>
 - explicit finite-volume scheme
 - TVD Lax-Friedrichs (Rusanov) MUSCL Hancock algorithm
 - Dedner's magnetic field diffusion div(B) treatment
 - parallelization by domain-decomposition

圣赋到

Solar Wind Plasma Parameters

Large variations in plasma parameters between the Sun and Earth; different regions involve different processes and phenomena We distinguish between the coronal and heliospheric regions with an interface located in the super-critical flow region (usually 18-30 Rs)

Merging of Coronal & Heliospheric Models

Driving Heliospheric Computations

 Analytic, empirical, and numerical models and observational data can be used to drive ENLIL (green) by sharing data sets (light blue) and using couplers (blue).

"Event-by-Event" Application

Background Solar Wind

Ambient Solar Wind Models

SAIC 3-D MHD steady state coronal model based on photospheric field maps

[SAIC maps – Pete Riley]

CU/CIRES-NOAA/SEC 3-D solar wind model based on potential and current-sheet source surface empirical models

[WSA maps – Nick Arge]

Wang-Sheeley-Arge (WSA) Maps

CU/CIRES-AFRL model based on potential and current-sheet source surface empirical models and empirical relationship between CH open flux and SW speed

Model Input

- $f_s =$ Magnetic field expansion factor
- θ_b = Minimum angular distance that an open field footpoint lies from nearest coronal hole boundary (i.e., Angular depth inside a coronal hole)

Boundary Conditions

Solar Wind at Inner Heliosphere

Solar Wind at Mid Heliosphere

Calibration of Ambient Solar Wind

Latitudinal distribution of the outflow velocity at model interface (top panel)
Predicted evolution at Earth (solid line) together with actually observed values (dots) by Wind s/c (bottom panel)

Match with observations has to be improved

Radial profiles of the solar wind flow velocity for MAS, WSA, and ENLIL models

R

ENLIL needs to use re-calibrated MAS or WSA solar wind flow speeds at the models interface boundary.

Solar Wind – Model Calibration – V_{MAE}

	a2b2	a3b2
CR2051	GONG = 142.9 MWO = 107.4 NSO = 115.8	GONG = 101.7 MWO = 89.60 NSO = 88-90
CR2052	GONG = 67.89 MWO = 47.72 NSO = 45.98	GONG = 54.55 MWO = 61.89 NSO = 45.64
CR2053	GONG = 59.85 MWO = 58.52 NSO = 53.74	GONG = 59.32 MWO = 86.02 NSO = 69.26
CR2054	GONG = 107.6 MWO = 80.26 NSO = 70.45	GONG = 94.91 MWO = 94.30 NSO = 85.48

Transient Disturbances

May 12, 1997 – Interplanetary CME

MAS coronal model (PSI)

ENLIL heliospheric model (*GMU-NASA /GSFC*)

Position of Lart

Self-consistent end-to-end numerical simulation of space weather event (NSF/CISM effort in progress)

(20Rs)

CME Cone Model

Observational evidence:

- CME expands self-similarly
- Angular extent is constant

Conceptual model:

 CME as a shell-like region of enhanced density

[Howard et al, 1982; Fisher & Munro, 1984]

Transient Disturbances

Modeling of the origin of CMEs is still in the research phases and it is not expected that real events can be routinely simulated in near future. Therefore, we have developed an intermediate modeling system which uses the WSA coronal maps, fitted coronagraph observations, specifies 3D ejecta, and drives 3D numerical code ENLIL.

Latitudinal Distortion of ICME Shape

ICME propagates into bi-modal solar wind

Radial Compression of ICME Structure

Fast stream follows the ICME

Evolution of Density Structure

ICME propagates into the enhanced density of a streamer belt flow

2008 April 26 CME with Cone Model

(Thernisien et al., 2009)

(WSA-1.6-GONG-CR2069)

2008 April 26 CME with Rope Model

N (1/cm³)

1000

(Thernisien et al., 2009)

(WSA-1.6-GONG-CR2069)

3000

4000

2000

IMF polarity

Current sheath

Interpretation of White-Light Observations

Modeling + imaging can differentiate between CIRs and CMEs

Modeling + imaging can follow distortions of CMEs by background solar wind

• Modeling + imaging can track interaction, merging, and amplification of disturbances

Need for Ensemble Modeling

2010-08-01 – Fitting of CMEs (Case 2) (Hong Xie, CUA)

The flux rope fit for the 2010-08-01 CMEs. From left to right, the four panels are: STEREO A COR2 images superposed with flux-rope model outline curves (yellow curves) for a) CME 1 at 06:08 (1); b) CME 2 at 10:08 (1); c) CME 3 at 13:08 (1); d) CME 4 at 20:08 UT.

CME 1: onset 03:05 UT at COR1-A ; Source: flare B4.5/N14E14 (Peak 03:50) CME 2: onset 07:45 UT at COR1-A; Source: flare C3.2/N20E36 (Peak 08:54) CME 3: onset 08:35 UT at COR1-A; Source: EP ~ 08:00 AIA 304, ~N33W08 CME 4: onset 16:35 at COR1-A; Source EP ~16:40 AIA 304, ~N20W05 (EP = eruptive prominence)

2010-08-01 – Fitting of CMEs (Case 1) (Curt de Koning, CU/CIRES)

2010-08-01 – Global Solution

Predicted Flow Velocity (Case 1)

Predicted Proton Density (Case 1)

Temporal Profiles – Earth (GLT)

1NLIL-2.7 medree-a/b1-s53 WSA: V2.2 GONG-2099_11510-08-01700 2011-01-14 (INLIL-2.7 medree-a/b1-s53 WSA: V2.2 GONG-2099_11510-08-01700 2011-

Temporal Profiles – Earth (GLT)

CME 1+2+3

CME 1+2+3+4

UNLIL-2. Amedres--arb1-sb3 WSA: V2.2 GONG-2009_11510-08-01700 2011-01-14 UNLIL-2. Amedres--arb1-sb3 WSA: V2.2 GONG-2009_11510-08-01700 2011-

Density Structures

White-Light Images

Observed Elongation-Time Plots (J-maps)

Synthetic Elongation-Time Plots (J-maps)

Output for Solar Energetic Particles

ICMEs and IMF Connectivity

Interplanetary CMEs (white shaded structure), interplanetary magnetic field (IMF) lies (colored by normalized density), during the April/May 1998 events. Geospace is magnetically connected to weak or strong shock front depending on rarefaction caused by preceding ICME.

Multiple Events Challenge

http://cdaw.gsfc.nasa.gov/CME_list/

- 5 halo CMEs between April 27 and May 2, 1998
- 18 CMEs between April 27 and May 2, 1998

Connectivity of Magnetic Field Line

Shock Tracing – 2006-12-09 Event

⁾⁶dec09/480x60x180.gong-2050-a2b2-sa1.4-mcp1umn1de-1.g15q0d4

Automatic Detection of Shock Parameters

Run-on-Request Service at CCMC

http://ccmc.gsfc.nasa.gov

					Services Available						
Domain	Model Name	Developer(s)	Institution	Model Class	Runs on Request	Instant Run	Real Time Run	Widget	Source Code on ftp		
COUPLED SOLAR - HELIOSPHERE	CORHEL MAS/WSA/ENLIL	J. Linker, Z. Mikic, R. Lionello, P. Riley, N. Arge, D. Odstrcil	PSI, AFRL, U.Colorado	physics-based MHD	x						
	SWMF/SC/IH	Tamas Gombosi et al.	CSEM	Physics-based MHD	х						
COUPLED MAGNETOSPHERE	SWMF/BATS-R-US with RCM	Tamas Gombosi et al., R. Wolf et al.	CSEM	Physics-based MHD	x						
	CORHEL MAS/WSA/ENLIL	J. Linker, Z. Mikic, R. Lionello, P. Riley, N. Arge, D. Odstrcil	PSI, AFRL, U.Colorado	physics-based MHD	x						
SOLAR	PFSS	J. Luhmann et al.	SSL/UC Berkeley	Potential Magnetic Field	х		x	х			
A CAL	WSA/PF with CS	Nick Arge	AFRL	Potential-based			X	Х			
F. Comb	SWMF/SC/IH	Tamas Gombosi et al.	CSEM	Physics-based MHD	x						

	ANMHD	Bill Abbett, Dave Bercik, George Fisher, Yuhong Fan	UC Berkeley	physics-based MHD	x			
	CORHEL MAS/WSA/ENLIL	J. Linker, Z. Mikic, R. Lionello, P. Riley, N. Arge, D. Odstrcil	PSI, AFRL, U.Colorado	physics-based MHD	x			
	SWMF/SC/IH	Tamas Gombosi et al.	CSEM	Physics-based MHD	х			
	ENLIL	D. Odstrcil	Univ. of Colorado at Boulder	Physics-based MHD	x	X	x	
	ENLIL with Cone Model	D. Odstrcil	Univ. of Colorado at Boulder	Physics-based MHD	x			
HELIOSPHERE	Heliospheric Tomography	B. Jackson, P. Hick	CASS/UCSD	Data Assimilative	х			
	Exospheric Solar Wind	H.Lamy, V.Pierrard	IASB	Physics-based Kinetic	x			
				Physics-Based Lagrangian				

EMMREM	N. Schwadron, L. Townsend, R. Squier, F. Cucinotta, M. H. Kim, K. Kozarev, R. Hatcher, M. PourArsalan	Boston Univ., U. Tenn, NASA JSC	Kinetic Model for Primary Transport (Energetic Particle Radiation Environment Model); Physics-based Secondary Transport Model (EMMREM looping version of BaRYON TRaNsport BRYNTRN Code)				
Global Magnetosphe	ere:						
BATS-R-US	Dr. Tamas Gombosi et al.	CSEM	Physics-based MHD	х	x	х	
SWMF/BATS-R-US with RCM	Tamas Gombosi et al., R. Wolf et al.	CSEM	Physics-based MHD	x			
OpenGGCM	Joachim Raeder, Timothy Fuller-Rowell	Space Science Center, UNH	Physics-based MHD	x			

GUMICS	Pekka Janhunen et.al.	FMI	Physics-based MHD	x				
LFM-MIX	John Lyon, Slava Merkin, Mike Wiltberger, Peter Schmitt	Dartmouth College/Boston University	physics-based MHD					
WINDMI	W. Horton, M. L. Mays, E. Spencer and I. Doxas	Univ. of Texas at Austin	physics-based		x	x		
Inner Magnetospher	re:							
Fok Ring Current	Mei-Ching H. Fok	NASA, GSFC	Physics-based	x			x	
AE-8/AP-8 RADBELT	Contact Person: D. Bilitza, NASA/GSFC	NSSDC, GSFC, NASA	Statistical		x			x
Geomagnetic Field M	Models:	^ 						
IGRF	Susan Macmillan, Stefan Maus	IAGA Working Group on IGRF	Statistical		x			x
Tsyganenko Model	Nikolai Tsyganenko	Univ. of StPetersburg, Russia	Statistical		x			x

	Ionosphere/Thermo	sphere:							
	SAMI2	Joseph Huba, Glenn Joyce, Marc Swisdak	NRL and Icarus Research, Inc.	Physics-based	x				
	CTIP	Timothy Fuller-Rowell et al	NOAA SEC	Physics-based	x				
IONOSPHERE/THERMOSPHERE	ABBYNormal	J. Vincent Eccles et al.	Space Environment Corporation	Physics-based	x	x	x		
	USU-GAIM	R.W. Schunk, L. Scherliess, J.J. Sojka, D.C. Thompson, L. Zhu	Utah State University	Physics-based data assimilation	x				
	IRI	D. Bilitza, NASA/GSFC	URSI/COSPAR Working Group on IRI	Statistical		x			х
	Ionosphere Electrod	ynamics:							
	Weimer	Daniel R. Weimer	Solana Scientific Inc.	Statistical		x	x	x	
	Atmosphere:								
	MSISE	A. E. Hedin	retired from. NASA, GSFC	Statistical		x			Х

Ambient Solar Wind Parameters

Basic Mode – Association with the Coronal Model and Resolution

Name	Title	Default	Range
cr	Carrington Rotation number	1922	1890 – present
resolution	Numerical grid resolution	low	low medium

Advanced Mode – Free Parameters at the Inner Boundary

Name	Title	Default	Range
vfast	Radial flow velocity of fast stream (km/s)	650.	600. – 700.
dfast	Number density of fast stream (cm ⁻³)	150.	100. – 200.
tfast	Temperature of fast stream (MK)	0.6	0.5 – 0.8
bfast	Radial magnetic field of fast stream (nT)	150.	100. – 200.
gamma	Ratio of specific heats	1.5	1.05 – 2.
xalpha	Fraction of alpha particles (rel. to protons)	0.	0. – 0.1
dvexp	Exponent in N V ^{dvexp} = const	2.	1. – 2.
nptot	=1 (=2) if $P_{the} (P_{tot}) = const$	1	1 2

Cone Model Parameters

Basic Mode – Observationally Based Parameters

Name	Title	Default	Range
ncloud	Number of clouds specified	1	0 – 5
Idates	Date(s) when cloud center at inner boundary	1997-05-12	yyyy-mm-dd
ltimes	Time(s) when cloud center at inner boundary	15:30	hh:mm
vcld	Cloud velocity (km/s)	700.0	500. – 2000.
x2cld	Cloud center co-latitude (deg)	87.0	0. – 180.
x3cld	Cloud center longitude (deg)	181.0	90. – 270.
rcld	Cloud radius (deg)	25.0	0. – 90.

Advanced Mode – Free Parameters at the Inner Boundary

Name	Title	Default	Range
dcld	Cloud density over fast stream value	4.	1. – 10.
tcld	Cloud temperature over fast stream value	1.	0.5 – 10.
xcld	Cloud trailing elongation over spherical shape	1.	1. – 5.
ncld	=1 (2) for trapezoidal (spherical) shape	1	1 2

Thank You