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Why Bother?
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d dynamics of solar atmospheric and ST structures?

s are responsible for heating in the solar atmosphere up to several

» What accelerates the solar wind up to measured speeds exceeding 700 km/s?

» What are the physical processes behind the enormous energy releases (e.g. solar
ares, megnetospheric substorms, energisation of ULF waves)?

ISWI Summer School University of Sheffield http://robertus.staff.shef.ac.uk
21-25 Aug 2011, SAS, Slovakia



Solar Physics & Space Plasma
Research Centre (SP’RC)

What is the MHD model?

e Single fluid (continuum) approximation, macroscopic
description

* Locally charged, globally neutral “close to” LTE

« MHD: perturbations of magnetic field, plasma velocity
and plasma mass density, described by the MHD (“single
fluid” approximation) set of equations, which connects
the magnetic field B, plasma velocity v, kinetic pressure
p and density p.

* Simplified Maxwell’s eqs + “classical” fluid dynamics
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Why study MHD?
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MHD plays a crucial approximation in the description of dynamics and structure
of the solar interior, the entire solar atmosphere (sunspots, chromosphere, TR,
corona, solar wind) and in Earth’ magnetosphere. MHD approximation is
adequately describes

e the evolution and development of plasma perturbations,
e the transfer of plasma energy and momentum,
 plasma heating / acceleration,

* helioseismology, solar atmospheric (magneto) seismology, magnetosphere
seismology.

 Also, we use it because it is relatively simple when compared to other approaches
(e.g., kinetic theory)!
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Ca Il emission Extreme ultra-violet
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Ha
15,000 K

He EUV
50,000 K

UV 1600 A

8000 K I MK

Magnetic field
5000 K

* Photosphere — chromosphere — TR — corona x5y
are magnetically coupled. 4-6 MK

Visible
000K e Very highly structured and dynamic;
challenge for seismology
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uding solar wind) —
¢ all magnetically coupled.

serfect tool to study this coupled, dynamic an structured

biassed) particularly exciting aspects:

* Influence of atmosphere on global oscillations.

@of p modes in the dynamics of the atmosphere! (Not yet explored.)
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Governing equations

(1.1)

, 1.
FVp+FJXB+FV (1.2)

= -V x E (1.3)

oT a‘;+V'VS)=—.£ (1.4) /
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Governing equations

unit mass, F, viscosity

y of empty space

plasmas (w71, <<1):

F =v V2v+§VV°V (1.6)

v is kinematic viscosity, pv = const 1s dynamic viscosity
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arge. Last term is Hall current.

atomic weight):

oT (1.8)

r 2 A
S (dv: 9y 2
2
_ovil S L T _Lvw)? L (1.10)
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Force-balance in magnetised plasmas

A magnetic field in a conducting fluid exerts a force per unit volume £,

= -~ - (VxB)xB
Fmag = xB=
U,
where j is the current and B the magnetic induction (often referred to as magnetic field strength).
This is the on the particles.
The equation of motion of an element of material inside a ‘flux tube’ in a conducting fluid is
i — (VxB)xB :
—Vp+pg+V.S+( ) = pV
U,

where g is the local gravitational acceleration, p the gas pressure, p the density and S a tensor
describing viscous stresses.

Setting v = 0 we have the equation of magnetohydrostatic equilibrium.
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Force-balance in magnetised plasmas
A magnetic field in a conducting fluid exerts a force per unit volume £,
(VxB)xB

U,

where j is the current and B the magnetic induction (often referred to as magnetic field strength).
This is the sum of Lorentz forces on the particles.

—

Fmag i jXB=

The equation of motion of an element of material inside a ‘flux tube’ in a conducting fluid is

e B)xB .
—Vp+/og+V.S+(Vx )X = pV
Y,

where g is the local gravitational acceleration, p the gas pressure, p the density and S a tensor
describing viscous stresses.

Setting v = 0 we have the equation of magnetohydrostatic equilibrium.
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MHS eulllbrlum

1.e., no Lorenz force

)’ where A(z)—@
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integrated number of scale height
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Hydrostatic pressure balance

Suppose: uniform vertical magnetic field

B = BOZ, g=—-g7 — ] =0 i.e., no Lorenz force

MHS equation becomes

dap B gu Z__p(Z) Z_RT(Z)
e p(z)g RT(Z)p() AG)’ where A(z) e

. J/
h'd

pressure scale height

Separate variables

d 1
R ,=log p =-n(z)+1logp(0), where n(z) = f
p A(z)’ A(”)
integrated number of scale height
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MHS equilibrium

- p(0)exp(-z/ A)

o 1: Mark the curves of A=1,2 and 3

Image: V. Nakariakov

www.warwick.ac.uk/go/space/
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MHS equilibrium

~~/
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A =50.5T m =50.5T[MK] Mm

Comapre to loop size!

81 m/s; p=029, T=300)

A =8.7 km
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Photosphere: structure of sunspots

G-=Band, 15 July 2002, Swedish 1—-m Solar Telescope 00:00:00

distance in units of 1000 kilometers
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Photosphere: structure of sunspots

Sunspots are cooler than their surroundings because their strong magnetic field inhibits
convection below the level of the photosphere. Hence, internal heat flux F,, 1s reduced
compared to external heat flux F,

Sunspot field structure determined by
lateral pressure balance
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Prominences/filaments

Filaments - called prominences when they appear in emission at the limb - are cool
(20,000K) dense (10°'m=) gas which is thermally isolated from the surrounding corona.

They appear in active regions and in the quiet sun, and overlay magnetic neutral lines.

AR filaments tend to erupt within a few days, QS filaments can last and grow for weeks.
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Prominences/filaments
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fields or flux

0
Normal Polarity Normal Polarity Inverse Polarity

Dip Model Flux Rope Model Flux Rope Model Magnetic pressure

Magnetic tension

X-type
Neutral Lines

These upward-curving field lines
can be envisaged in a number of
geometries.

N
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Governing equations

B force, the MHS equation

¢ gas pressure has virtually no influence (low-f3

orce free. Moving outwards in the atmosphere the gas pressure and
, and the force-free condition becomes a good approximation (from ~500km

)

ove a few tenths of a solar radius, the field is again not force-free.
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Force-free and non-force-free fields
In the case of where all forces are negligible, except for the j x B force, the MHS equation

reduces to _
jxB=0

This 1s known as the ‘force-free’ condition. The gas pressure has virtually no influence (low-f3
plasma).

Note: There are no cross-field currents in a force-free plasma. All currents are field-aligned.

The photosphere is not force free. Moving outwards in the atmosphere the gas pressure and
viscosity decrease, and the force-free condition becomes a good approximation (from ~500km
above Ty, =1)

Above a few tenths of a solar radius, the field is again not force-free.
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Limits of applicability

an the Larmour rotation

©  Hz E.g, for B=10 G, n,=5x1014 m-3

Hz
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Limits of applicability

than the Larmour rotation

a: fi,mp < 1 Hz. E.g., for B=10 G, n,=5x10'* m™?

Hz

er School University of Sheffield http://robertus.staff.shef.ac.uk
Aug 2011, SAS, Slovakia



Limits of applicabili

ousand km/s).

> much longer than the Larmour rotation
a period.

solar corona: f, ., < 1 Hz. E.g., for B=10 G, n,=5x10'* m-3
—1.52x103xB(G)= 1.52x10* Hz
=9x n,!"? (m3)=2x10% Hz

f

gyro

f

plasma
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1stic times are much longer than the collision times.

aracteristic spatial scales are larger than the mean free path
ength T2
n[m™]
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Limits of applicabili

¢ ratio of the dispersive
1on relation (the dispersive

ced):
2w, 5x10°
Wy L L[m]

aracteristic times are much longer than the collision times.

 Characteristic spatial scales are larger than the mean free path
length 72
n[m™]
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Limits of applicab

ant. The ratio of the dispersive
dispersion relation (the dispersive
hase speed):

2w, 5x10°

o, L L[m]

=5x10> m H=0.001

 Characteristic times are much longer than the collision times.

 Characteristic spatial scales are larger than the mean free path

length 7 2
g P 7.2x10"T*[K]

5 [.=10°-10°m
nm™ |
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The magnetic field is for the most part ‘frozen-in’ to the coronal plasma.
This 1s the same as saying that the plasma is highly conducting.

We can demonstrate this by looking at field advection and diffusion. Start
with Ohm’s law: K

E + VX E = i o = conductivity = 1/mu,
o)
Take the curl of this equation, and use V x E = —(9B/dt)to eliminate E.
B V(@ B)-nVx(Vx)
where we have also used VxB = uoj

Expanding the last term, and using V.B =0 we arrive at the induction equation
B _ = .
F =Vx(vxB)+nV’B

ISWI Summer School University of Sheffield
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The two terms on the left hand side represent the advection of field by the
flow, and the dissipation of field due to resistivity

B = _
— =Vx(vxB)+nV°B
gt 1 2
Normally in the solar atmosphere (e.g. corona), conductivity o is very high, son =1/u 0 is

very small.
In this case, term 2 is negligible in comparison with term 1. So the equation
becomes 0
il =V x(vxB)
ot
v X B 1s the component of flow perpendicular to the magnetic field. So perpendicular flows
distort B, and vice versa. The field is locked to the plasma.

(In fact one must prove that the total magnetic flux through a surface remains constant as the
ield is deformed).
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Potential and force-free fields

Construct magnetic structure
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e field lines are defined

r s 1s the distance along the field line.
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dient and Lorenz force:

gas pressure p

magnetic pressure B2 /2 u
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=6x10° K, n=10?> m3, B=1000 G = =2
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> =3.5x10°
bes: 7=6x10° K, n= 10 m3, B=1000 G = =2

=2x10° K, n= 10" m=3, B=6x10 G = =2
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Potential and force-free fielc

SSure

onetic field called force-free

VxB =0 Magnetic field called potential

solution:

B = Vg, where @ 1s the scalar magnetic potential

Solenoidal condition (V:-B=0) has to be satisfied, i.e.
’p i o

Vi = (f + (f + (2P =0
ox~ dy" oz

Laplace equation
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S: (x,0)=F(x), ¢(0,y)= ¢(1,y)=0, p =0 as y —x, giving
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hb=d=0 and sinkl =0 =k = -
e University of Sheffield http://robertus.staff.shef.ac.uk

011, SAS, Slovakia




x + b cos kx

ons: ¢(x,0)=F(x), (0,y)= ¢(1.y)=0, ¢ —0 as y —o, giving

niw
b=d=0 and sinkl =0 =k = -
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of variables ¢:=X(x)Y(y)

2
= -k = const

= g sin kx + b cos kx

(y) = cexp(-ky) + d exp(ky)
conditions: ¢(x,0)=F(x), (0,y)= ¢(1,y)=0, p —0 as y —, giving

ni
b=d=0 and sinkl =0 =k = -
e University of Sheffield http://robertus.staff.shef.ac.uk
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JIX
p(x,y) = sin T exp(—my /1)

Jd@ JIX

B = = B, cosTexp(—ny/l),
@ .

By =i -B, smTexp(—Jzy/l)
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parallel to magnetic field)

- (aB)

V:(aB) = aY;B+B-V0¢
0
B:-Va =0 (oe=const along magnetic field lines!)
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2
oVxB =a B

) ) 2 2
8)-V B=-VB -VB=0aB

-0 Helmholtz equation

2
VxB)=Vx(aB)=aVxB+VaxB=a B+VaxB
2
Vx(VxB)=-V B
2 2
a B+V B=BxVqa [B-Va = 0]
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ric magnetic fields

e-free fields

ospheric field distributions, one can extrapolate the coronal magnetic field
B=0 and VxB=aB, with appropriate upper boundary conditions)

tra energy stored in non-potential fields is exhibited as ‘twist’. It is this excess of energy
vhich can be released in the form of a solar flare or coronal mass ejection.
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librium of coronal loops
, which is

=0

)

ield can carry field-aligned currents,
g up (putting energy into) the field. Generally

VxB = a(X, y)]§

0: potential field. There are no currents
oL = const: linear force-free field. j= aB

oL = const: non-linear FFF
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HEquilibrium of coronal loops

Loops must be heated by some mechanism(s), which may be varying in time and space.
Locally, for equilibrium conditions, we have:

E +E+E_ =0

(The three main ideas are — basal heating, looptop heating, uniform heating.
Observationally, basal heating looks slightly more likely than the others)

heat

This equation is solved in tandem with the equation of hydrostatic equilibrium

dp
—+pg =0
s Pg

With appropriate boundary conditions (conductive flux=0 at loop apex,
monotonically increasing T with height, small vertical extent compared to
coronal scale height) one obtains loop ‘scaling laws’, e.g.

Tapex o (pL)l/3 (‘RTV’= Rosner,Tucker Vaiana Law)
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( Tmax < 105K)

Dowdy et al. (1986)

2D stati

~10%Kkm
NETWORK LANE

COOLER NETWORK LOOPS

] HOTTER NETWORK LOOPS
(109K < Tmax < 106K)

Solar Phys., 105, 35 CORONAL FUNNELS

» press
Gabriel (1976), Phil. Trans. A281, 339
N —
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