The Solar Corona and Inner Heliosphere

Jaroslav Dudík ^{1,2}

 ¹ – DAPEM, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
 ² – Astronomical Institute of the Academy of Sciences Ondřejov, Czech Republic

> ISWI-Europe Summer School in Space Science, AISAS, Tatranská Lomnica, August 22, 2011

Outline

- I. The Solar Corona and Wind: Basic Properties White-light corona from eclipses Solar wind
- II. Observations: Towards Imaging Spectroscopy Basics of spectroscopy of optically thin plasmas Instrumentation Active regions, Quiet Sun, Coronal holes Warm loops, hot loops Isothermal vs. DEM, resolved vs. unresolved
- III. The Coronal Heating Problem Scaling laws Steady vs. Impulsive Forward models of the active region coronae

Solar corona – basic properties

Phillips, Feldman & Landi (2008): UV and X-ray Spectroscopy of the Solar Atmosphere, image after Gabriel (1976), Vernazza et al. (1981) and Fontenla et al. (1990)

Image courtesy: prof. M. Druckmüller

Image courtesy: prof. M. Druckmüller

Image courtesy: prof. M. Druckmüller

C/1996 B2 (Hyakutake), image: E. Kolmhofer, H. Raab Johannes-Kepler-Observatory, Linz, Austria

Solar wind – basic properties

Continuous outward stream of particles from the Sun

- Consequence: heliosphere
- 1916, Birkeland: solar wind consists of both positive and negative particles
- 1958, Parker: Theory of solar wind supersonic flow
- 1959, Luna 1: first direct observation of Solar wind

> Mass loss rate: ~ 2 x10⁻¹⁴ M_{\odot} yr⁻¹

Average	Slow wind	Fast wind	
$n = 8.7 \pm 6.6$	11.9 ± 4.5	3.9 ± 0.6	cm ^{−3}
$v = 468 \pm 116$	327 ± 15	702 ± 32	km.s ⁻¹
$T_e = 1.4 \pm 0.4 \text{ x}10^5$	$1.3 \pm 0.3 \text{ x10}^{5}$	$1.0 \pm 0.1 \times 10^{5}$	К
$T_p = 1.2 \pm 0.9 \text{ x}10^5$	$3.4 \pm 1.5 \text{ x10}^4$	$2.3 \pm 0.3 \times 10^{5}$	К

Solar wind – properties

Solar wind – properties

McComas et al. (2008), Geophys. Res. Lett. 35, L18103

Velocity distribution

Observed velocity distribution shows non-thermal tails: The velocity distribution is better fitted by one *k*-distribution than by one Maxwellian or sum of two Maxwellian distributions

Maksimovic et al. (1997), Astron. Astrophys. 324, 725

Image credit: NASA/JPL/JHUAPL

The EUV and X-ray corona: Spectroscopy, heating, and other stuff

Spectroscopy – an introduction

The emissivity ε_{ij} of a spectral line λ_{ij} produced by transitions from level *i* to level *j* in a *k*-times ionized atom of element *x* is given by

$$\varepsilon_{ij} = \frac{hc}{\lambda_{ij}} A_{ij} n_i = \frac{hc}{\lambda_{ij}} \frac{A_{ij}}{n_e} \frac{n_i}{n_k} \frac{n_k}{n_x} \frac{n_x}{n_H} n_H n_e$$
$$= A_x G(T, n_e) n_H n_e$$

Intensity *I_{ij}* of this emission line arising in optically thin plasmas with volume V is

$$I_{ij} = A_x \int G(T, n_e) n_H n_e dV$$

FIP effect, or the "coronal abundances"

Elements with first ionization potential smaller than 10 keV have greatly enhanced abundances in the corona: FIP effect

Feldman & Widing (2003), Space Sci. Rev. 107, 665

Ionization equilibrium – Fe

Dere et al. (2009), Astron. Astrophys. 498 915, CHIANTI 6 paper

EM and DEM(T)

If the plasma is isothermal, the intensity is simply

$$I_{ij} = A_x G(T, n_e) \int n_H n_e dV = A_x G(T, n_e) EM(T).$$

However, if the plasma is multithermal, i.e., has a range of temperatures, the intensity is given by

$$I_{ij} = A_x \int G(T, n_e) n_H n_e \frac{dV}{dT} dT = A_x \int_T G(T, n_e) DEM(T) dT$$

where DEM(T) is the differential emission measure.

EM-loci method

Warren et al. (2011), Astrophys. J. 734, 90

Radiative losses from the corona

Dudík et al. (2011), Astron. Astrophys. 529, A103

EUV and X-ray filters

Dudík et al. (2009), Astron. Astrophys. 505, 1255

Hinode/XRT, Hinode/EIS

Hinode ("Sunrise" in japanese) The X-Ray Telescope (XRT) EUV Imaging Spectrometer (EIS)

- Jap. mission, launched 2006
- multi-filter telescope
- 170-210 Å and 250-290 Å
- slit-slot mech. 1", 2", 40", 266"

Narukage et al. (2011), Solar Phys. 269, 169

Narukage et al. (2011), Solar Phys. 269, 169

XRT – temperature response

SDO/AIA

Solar Dynamics Observatory: NASA mission, launched 2010

Atmospheric Imaging Assembly (AIA):

- four identical EUV full-disc telescopes, state-of-the-art
- cadence of few seconds
- 0.6" resolution
- broad temperature coverage
- successor to SoHO/EIT and TRACE

Table 1. Predicted AIA count rates.

	Ion	λ	$T_{\rm p}^{\ a}$	Fraction of total emission			
		Å	Κ	CH	QS	AR	FL
94 Å	Mg VIII	94.07	5.9	0.03	_	_	_
	FeXX	93.78	7.0	_	_	_	0.10
	Fe XVIII	93.93	6.85	_	_	0.74	0.85
	Fe X	94.01	6.05	0.63	0.72	0.05	_
	Fe VIII	93.47	5.6	0.04	-	-	-
	Fe VIII	93.62	5.6	0.05	-	-	-
	Cont.			0.11	0.12	0.17	-
131 Å	O VI	129.87	5.45	0.04	0.05	-	-
	Fe XXIII	132.91	7.15	-	-	-	0.07
	FeXXI	128.75	7.05	-	-	-	0.83
	Fe VIII	130.94	5.6	0.30	0.25	0.09	-
	Fe VIII	131.24	5.6	0.39	0.33	0.13	-
	Cont.			0.11	0.20	0.54	0.04
171 Å	Ni XIV	171.37	6.35	_	_	0.04	_
	Fe X	174.53	6.05	_	0.03	_	_
	FeIX	171.07	5.85	0.95	0.92	0.80	0.54
	Cont.			-	-	-	0.23
193 Å	OV	192.90	5.35	0.03	_	_	_
	Ca XVII	192.85	6.75	-	-	-	0.08
	Ca XIV	193.87	6.55	-	-	0.04	-
	Fe XXIV	192.03	7.25	-	_	-	0.81
	Fe XII	195.12	6.2	0.08	0.18	0.17	-
	Fe XII	193.51	6.2	0.09	0.19	0.17	-
	Fe XII	192.39	6.2	0.04	0.09	0.08	-
	Fe XI	188.23	6.15	0.09	0.10	0.04	-
	Fe XI	192.83	6.15	0.05	0.06	-	-
	Fe XI	188.30	6.15	0.04	0.04	-	-
	Fe X	190.04	6.05	0.06	0.04	-	-
	FeIX	189.94	5.85	0.06	-	-	-
	FeIX	188.50	5.85	0.07	-	-	-
	Cont.			-	-	0.05	0.04
211 Å	Cr IX	210.61	5.95	0.07	_	_	_
	Ca XVI	208.60	6.7	-	_	_	0.09
	Fe XVII	204.67	6.6	-	-	-	0.07
	Fe XIV	211.32	6.3	-	0.13	0.39	0.12
	Fe XIII	202.04	6.25	-	0.05	-	-
	Fe XIII	203.83	6.25	_	_	0.07	_

211 Fe XIV193 Fe XII171 Fe IX

211 Fe XIV193 Fe XII171 Fe IX

X-ray "hot" loops

HINODE/XRT Al-poly average

fan loops

AR core (X-rays)

EUV moss

peripheral loops (EUV)

TRACE 171 warm loops

Loop Cross-sections
Scale-height
Loops & Background
Temperature profiles: Isothermality

Loops - geometry

Aschwanden et al. (2008), ApJ 679, 827

Loops can be hydrostatic

WARNING: BACKGROUND !

Background can be ~ 80% of the actual observed signal:

Aschwanden et al. (2008), ApJ 680, 1477

Loops or strands...

Aschwanden et al. (2000), ApJ 541, 1059

Loop: coherent structure in an observed image of the corona Strand: Fundamental, independent, elementary structure with an isothermal cross-field profile, thickness down to the gyro-radius < 1 m

Reale & Peres (2000), ApJ 521, L45: Multithermal, multi-strand loop, with different temperature structure for each strand, can produce false "isothermal" loop if unresolved

Isothermal or multithermal?

Schmelz et al. (2009): ApJ 691, 503: Are Coronal Loops Isothermal or Multithermal?

Conclusion: Yes

Loop dynamics

The Coronal Heating Problem

The Corona is heated to temperatures of several MK. But how?

- Small-scale reconnection: Parker's nanoflares
- > Wave heating
- Note on terminology: The current "nanoflare" models simply refer to any impulsive energy release (papers by the Klimchuk group)

Required heating flux

Exponentially decreasing heating

$$F_{\rm H} = E_{\rm H0} s_{\rm H}$$

$$\approx 5 \times 10^3 \left(\frac{n_e}{10^8 \, {\rm cm}^{-3}}\right)^2 \left(\frac{T}{1 \, {\rm MK}}\right) \quad [{\rm ergs \ cm}^{-2} {\rm s}^{-1}]$$

$$\uparrow$$

$$F_{\rm H0} \approx E_{rad} = n_e^2 Q(T)$$

 $Figure Coronal hole: T \approx 1 \text{ MK}, n_e \approx 10^8 \text{ cm}^{-3}: F_H \approx 5 \text{ x}10^3 \text{ ergs cm}^{-2} \text{ s}^{-1}$ $Figure Active region: T \approx 2.5 \text{ MK}, n_e \approx 2 \text{ x}10^9 \text{ cm}^{-3}: F_H \approx 5 \text{ x}10^6 \text{ ergs cm}^{-2}$

Modeling: MHD Equations

Simple solution: Scaling laws

Assumptions:

- No time derivatives
- No flows
- Geometrically symmetric loop with symmetric heating
- Vanishing thermal conductivity at loop apex and footpoints

$$p_{0}(L_{0}, s_{H}, T_{1}) = L_{0}^{-1}T_{1}^{3}S_{1}^{-3},$$

$$E_{H0}(L_{0}, s_{H}, T_{1}) = L_{0}^{-2}T_{1}^{7/2}S_{2},$$

$$S_{1}^{RTV} = 1,4 \times 10^{2} \quad [K \ s^{2/3}kg^{-1/3}],$$

$$S_{2}^{RTV} = 9,5 \times 10^{-6} \quad [kg \ m \ s^{-3}K^{-7/2}].$$

$$S_{1}^{Serio} = 1.4 \times 10^{2} \ e^{-(0,08L_{0}/s_{H}+0,04L_{0}/s_{p})},$$

$$S_{2}^{Serio} = 9,5 \times 10^{-6} \ e^{(0,78L_{0}/s_{H}-0,36L_{0}/s_{p})}.$$

Rosner, Tucker, Vaiana (1978) Serio et al. (1981) schwanden & Schrijver (2002) Dudík et al. (2009) Martens (2010)

Proposed heating models

Description	Number	Reference	MDK Scaling	B Case a	B Case b	B Case c	L			
Stochastic buildup	1	1	$B^2 L^{-2} V^2 \tau$	B^2	B^1	B^2	L^{-2}			
Critical angle	2	2	$B^2 L^{-1} V^1 \tan \theta$	B^2	$B^{1.5}$	B^2	L^{-1}			
Critical twist	3	3	$B^2 L^{-2} V^1 R^1 \phi$	B^2	B^{1}		L^{-2}			
Reconnection $\propto v_A$	4	4	$B^1 L^{-2} \rho^{0.5} V^2 R^1$	B^1		$B^{0.5}$	$L^{-2.45}$			
Reconnection $\propto v_{A\perp}$	5	5	$B^{1.5}L^{-1.5}\rho^{0.25}V^{1.5}R^{1.5}$	$B^{1.5}$		$B^{0.75}$	$L^{-1.725}$			
Current layers (DC)	6	6	$B^2 L^{-2} V^2 \tau \log R_m$	B^2			L^{-2}			
	7	7	$B^2 L^{-2} V^2 S^{0.1} \tau$	B^2			L^{-2}			
	8	8	$B^2 L^{-2} V^2 \tau$	B^2			L^{-2}			
Current sheets	9	9	$B^2 L^{-1} R^{-1} V_{\rm ph}^2 \tau$	B^2		$B^{2.5}$	L^{-1}			
Taylor relaxation	10	10	$B^2 L^{-2} V_{\rm ph}^2 \tau$	B^2			L^{-2}			
Turbulence (DC) with:			Pri							
Constant dissipation coefficients	11	11	$B^{1.5}L^{-1.5}\rho^{0.25}V^{1.5}R^{1.5}$	$B^{1.5}$		$B^{0.75}$	$L^{-1.725}$			
Closure	12	12	$B^{1.67}L^{-1.33}\rho^{0.17}V^{1.33}R^{0.33}$	$B^{1.67}$		$B^{1.505}$	$L^{-1.483}$			
Closure + spectrum ($s = 0.7$)	13	13	$B^{1.7}L^{-1.7}\rho^{0.15}V^{1.3}R^{0.7}$	$B^{1.7}$		$B^{1.35}$	$L^{-1.835}$			
Closure + spectrum $(s = 1.1)$	14	13	$B^{2.1}L^{-2.1}\rho^{-0.05}V^{0.9}R^{1.1}$	$B^{2.1}$		$B^{1.55}$	$L^{-2.055}$			
Resonance $(m = -1)$	15	14	$B^{0}L^{-2}$	B^0			L^{-2}			
Resonance $(m = -2)$	16	14	$B^{-1}L^{-1}\rho^{0.5}$	B^{-1}			$L^{-1.45}$			
Resonant absorption I $(m = -1)$	17	15	B^0L^0	B^0			L^0			
Resonant absorption I ($m = -2$)	18	15	$B^{-1}L^1 ho^{0.5}$	B^{-1}			$L^{0.55}$			
Resonant absorption II $(m = -1)$	19	16	$B^0 L^1 \rho^1$	B^0			$L^{0.1}$			
Resonant absorption II $(m = -2)$	20	16	$B^{-1}L^2\rho^{1.5}$	B^{-1}			$L^{0.65}$			
Current layers (AC)	21	17	$B^1 L^{-1} \rho^{0.5} V^2$	B^1			$L^{-1.45}$			
Turbulence (AC)	22	18	$B^{1.67}L^{-1.33}R^{0.33}$	$B^{1.67}$		$B^{1.505}$	$L^{-1.33}$			

Lundquist et al. 2008, ApJ 689, 1388

TABLE 1 HEATING SCALE RELATIONSHIPS

Warren & Winebarger (2007) ApJ. 666, 1245

Lionello et al. (2011) Loops Workshop V presentation

Thermal nonequilibrium

1. If the heating is too localized near the footpoints, the thermal conduction cannot balance the radiative losses near the apex.

- 2. As a result, loop apex cools.
- **3. Cooling increases radiative losses!**
- 4. Condensation develops, grows and falls down. Loop empties.
- 5. Empty loop is heated, resulting in chromospheric evaporation. Cycle renews.

Nanoflare storms

Viall & Klimchuk (2011), ApJ 738, 24

Concluding remarks

> The solar corona is a rather fascinating environment

> Corona is NOT well understood, especially the heating part

But significant progress in the last 3-4 decades

For now, imaging spectroscopy is the way to go: push for high spatial, temporal, AND spectral resolution at the same time

Theoretical modeling becomes routine.

Thank you for your attention! (I hope you learned something)