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• ~ 150 years ago – Schwabe discovered the 11- year cycle 
of sunspots (1844)

• 1858: Carrington discovers latitudinal drift
• Maunder invents butterfly diagram
• ~ 100 years ago – Hale discovered strong magnetic field in 

sunspots (B about 3000 G) (1908)
• ~ 50 years ago – Parker formulated dynamo theory for the 

origin of astronomical magnetic fields (1955)
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Brief history
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Hale et al. (1919) – Often 
two large sunspots are seen 
side by side with opposite 
polarities.

Sunspots are magnetic field 
concentrations in turbulent
plasma



Origin of Solar Magnetic Field 

• The origin of the solar magnetic field remains a stubborn 
challenge of astrophysics.

• At the solar surface the magnetic field assumes a complex, 
hierarchical structure in space and time. 

• Systematic features such as the solar cycle and the buttery 
diagram point to the existence of a deep-rooted large-
scale predominantly toroidal magnetic field. 
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• Dynamo theory of astrophysical bodies uses 
magnetohydrodynamic equations to investigate 
how the fluid can continuously regenerate the 
magnetic field.
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Making a solar dynamo model

• Dynamo theory describes the process through 
which a rotating, convecting, and electrically 
conducting fluid acts to maintain a magnetic 
field. 
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Consists in finding /producing a (dynamically 
consistent) flow field that has inductive 
properties capable of sustaining B against 
Ohmic dissipation.

The dynamo problem 



There are three requisites for the dynamo 
process to operate:

• An electrically conductive fluid medium
• Kinetic energy provided by body rotation
• An internal energy source to drive 

convective motions within the fluid.
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Induction or creation of magnetic field 
is described by the induction equation:



In the interior of the Sun
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the collisional mean-free path of 
microscopic constituents ˂˂ competing plasma 

length scales

fluid motions are non-relativistic, the plasma is 
electrically neutral and non-degenerate.

Ohm’s law holds
Ampere’s law in its 
pre-Maxwellian 

MHD induction 
equation

→ →



The magnetohydrodynamical
(MHD) induction equation
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where 𝜂 = 𝑐2/4𝜋𝜎e is the magnetic diffusivity

the divergence-free condition ∇·B = 0 

An evolution equation for the flow field u:

(1)



The Navier–Stokes equations
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where 𝜏 is the viscous stress tensor 

Complemented by: 
conservation of 
mass and energy

as well as an 
equation of state

(2)
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Basic equations of  solar 
magnetism

Solar convection zone governed by equations of compressible MHD



The Dynamo Problem

• A dimensionless ratio of advection of magnetic field to 
diffusion. Magnetic Reynolds number:
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Inductive action of the flow field Resistive dissipation

Rm = 𝑢𝐿/𝜂

Here 𝜂, 𝑢, and 𝐿 are “typical” numerical values for the 
magnetic diffusivity, flow speed, and length scale over 
which B varies significantly.

+



*Sufficiently vigorous flows convert mechanical into magnetic energy  if 
Magnetic Reynolds number                                 is large enough

Magnetic fields and flows
• Interaction of magnetic fields and flows due to induction 

(kinematics) and body forces (dynamics).
• Recall induction equation (from Faraday’s Law, Ampère’s Law and 

Ohm’s Law)

Induction Dissipation

• Induction – leads to growth of energy through extension of field lines
• Dissipation – leads to decay of energy into heat through Ohmic loss.
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In the solar cycle context

• Ultimately, amplification of B occurs by stretching the pre-
existing magnetic field. This is readily seen upon  rewriting 
the inductive term in Equation (1) as:
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Exponential amplification of the magnetic field 

The dynamo problem is reformulated towards to 
sustain the cyclic regeneration of the magnetic field 
associated with the observed solar cycle.
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1) Indicators of  the Solar Cycle
Sunspots 

•Cyclical behaviour of the Sun: sunspots, observed since time of Galileo.
•Sunspots appear in pairs of opposite polarity, with leader spots of opposite 
polarity in the two hemispheres. (Hale’s Law).
•Butterfly diagram shows a basica11y cycle, with long period modulation of 
cycles (Grand Minima) over times of order 200y. Also evidence of shorter 
modulation period (Glassberg cycle).
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The Solar cycle is due to a 
large scale dynamo

Sun’s natural decay time τη=R2/η is very long (~1010 y) but 
cycle time is much less than τη :

Coherence of sunspot record suggests global mechanism 
operating at all longitudes. 

Polarity of leading spots and dipole moment changes every 11y.

• Dynamo process in and/or just below convection zone. In this 
case velocity anomalies will be driven by Lorentz forces j×Β
and so have 11y period.

• Velocity data favours dynamo explanation. If there is a 
dynamo it must be fast 
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2) Modulations of  the Cycle
• Grand minimum (hardly any sunspots: cold climate in N 

Europe (“little Ice Age”) can be seen in early sunspot 
record. (Maunder Minimum).

• Proxy data provided by 14C (tree rings) and 10Be (ice cores). 
Intensities reflect cosmic ray abundance - varies inversely 
with global solar field. Shows regular modulations with 
period ~200y.

• Cyclic behaviour apparently persisted through Maunder 
minimum.

• Shorter modulation periods can be found (e.g. Glassberg 
88y cycle)
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Leighton, Noyes & Simon 1962 – discover solar oscillations. 
Deubner 1974 – recognizes them as normal modes.

3) Helioseimology

Moreover, helioseismology (Christensen-

Dalsgaard, 2002) has now pinned down with 
good accuracy two important solar large-
scale flow components:
•differential rotation throughout the 
interior, 
•meridional circulation in the outer half 
of the solar convection zone (for reviews, see 
Gizon, 2004; Howe, 2009).

Miesch M S, Brun A S, DeRosa M L and Toomre J, 2008



Flux transport dynamo in the Sun
(Choudhuri, Schussler & Dikpati 1995; Durney 1995)
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Meridional circulation
carries toroidal field
equatorward & poloidal
field poleward

Basic idea was given by Wang, Sheeley & Nash (1991)

Differential rotation 

Babcock-Leighton 
process



Dynamo in the solar cycle
A model of the solar dynamo should also 
reproduce:
•cyclic polarity reversals with a ∼ 10 yr half-period,
•equatorward migration of the sunspot-generating deep toroidal 
field and its inferred strength,
•poleward migration of the diffuse surface field,
•observed phase lag between poloidal and toroidal components,
•polar field strength,
•observed antisymmetric parity,
•predominantly negative (positive) magnetic helicity in the 
Northern (Southern) solar hemisphere.
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At the next level of “sophistication”

• Amplitude fluctuations, reproduce the many empirical 
correlations found in the sunspot record.

• Include an anticorrelation between cycle duration and 
amplitude (Waldmeier Rule)

• Alternation of higher-than-average and lower-than-
average cycle amplitude (Gnevyshev–Ohl Rule)

• good phase locking, 
• and occasional epochs of 

suppressed amplitude over 
many cycles (the so-called 
Grand Minima)

• torsional oscillations in the 
convective envelope
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• The outer 30% in radius of the 
Sun are the seat of vigorous, 
thermally-driven turbulent 
convective fluid motions

• The solar dynamo problem is 
very hard to tackle as a direct 
numerical simulation of the 
full set of MHD equations 
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Most solar dynamo modelling work:
• relied on simplification of the MHD equations
• assumptions on the structure of the Sun’s magnetic field and 
internal flows.



I: Kinematic dynamo theory
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Velocity field is prescribed, instead of being a 
dynamic variable.

Using Maxwell´s equations 
simultaneously with the curl 
of Ohm´s Law

Magnetic field→

A first drastic simplification of the MHD system of 
equations:

Induction equation becomes truly 
linear in B.



• One arrives at a critical magnetic Reynolds number above 
which the flow strength is sufficient to amplify the imposed 
magnetic field, and below which it decays. 
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The most functional feature of kinematic dynamo 
theory is that it can be used to test whether a 
velocity field is or is not capable of dynamo action
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II: Axisymmetric magnetic field

Poloidal Component
(responsible for weak fields)

Toroidal component
(gives rise to sunspots)

Differential rotation produces 
toroidal field from poloidal

Tachocline

Toroidal field > bipolar
sunspots > poloidal field



• The sunspot butterfly diagram
• Hale’s polarity law
• Synoptic magnetograms
• The shape of the solar corona at and around solar activity 

minimum.
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Suggest a good first approximation:
The large-scale solar magnetic field is axisymmetric about the 
Sun’s rotation axis, as well as antisymmetric about the 
equatorial plane.



Large-scale field
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toroidal component (i.e., longitudinal) 

+
poloidal component (i.e., contained in meridional planes)

solenoidal constraint     ∇ · B = 0 

MHD induction equation Evolution equations for 𝐴
and 𝐵 (coupled)→



The 𝜑-component with the Coulomb gauge ∇ · A = 0 yields:
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The code Surya solves these
Equations, (Nandy & Choudhuri 2002)



Dynamo models explicitly or implicitly divide the 
solar envelope into three distinct regions:
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• The convection zone, region II, lies between 0.72R and 
0.98R

• Region I then stretches from 0.98R to the photosphere.
• Region III includes the tachocline, r~ 0.68R-0.72R



• The solar tachocline is also 
situated near the base of the 
convection zone, and provides a 
mechanism to convert a weak 
poloidal magnetic field into a 
strong toroidal magnetic field

The tachocline is the 
rotational shear layer 
uncovered by helioseismology 
immediately beneath the 
Sun’s convective envelope, 
providing smooth matching 
between the latitudinal 
differential rotation of the 
envelope, and the rigidly 
rotating radiative core
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The Tachocline
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The Solar interior and surface
Solar Interior

• Core
• Radiative Interior
• (Tachocline)
• Convection Zone

Visible Sun
• Photosphere
• Chomosphere
• Transition Region
• Corona
• (Solar Wind)



Magnetic Field Mechanisms

Choudhuri, Chatterjee &Jiang (2007)

Polar field at the minimum gives an indication of the 
strength of the next solar maximum 
(Schatten, Scherrer, Svalgaard &Wilcox 1978)

Cyclic regeneration of Sun´s large scale field: 

T picks near Sunspot cycle maximun
P picks at the time of sunspots minimum



The dynamo problem can be broken into sub-problems:

a)Poloidal component   →→  Toroidal
b)Toroidal  component →→   Poloidal

Parker (1955) suggested oscillation between the toroidal and 
poloidal fields.
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The polar fields and the sunspot 
number as functions of time



Poloidal to Toroidal

Large-scale flow field u as the sum of an axisymmetric azimuthal 
component (differential rotation), and an axisymmetric “poloidal” 
component  

converting rotational kinetic energy into magnetic energy.

𝑃 → 𝑇 production mechanism

↓



Toroidal to Poloidal

Additional source term is necessary?

There exist various mechanisms that can 
act as a source of poloidal field:

• Turbulence and mean-field 
electrodynamics

• Hydrodynamical shear instabilities
• MHD instabilities
• The Babcock–Leighton mechanism



Turbulent convection

• The outer ∼ 30% of the Sun are in a state of 
thermally-driven turbulent convection.

• Anisotropic turbulence (gravity and Coriolis force)

• Mean-field 
electrodynamics offers a 
tractable alternative for 
turbulent MHD.

Evolution of the largescale
magnetic field on time scales 
longer than the turbulent
time scale
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*mean components, ⟨u⟩ and ⟨B⟩, + small-scale fluctuating u′, B′.  



Upon this separation and averaging procedure, the MHD 
induction equation for the mean component becomes:
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↑
mean electromotive force  ℰ

The next step is to express ℰ in terms of the mean field ⟨B⟩

Expressing ℰ as a truncated series
expansion in ⟨B⟩ and its derivatives

(Turbulent model is required for 𝛼 and 𝛽)



The 𝛼Ω dynamo equations
Adding the mean-electromotive force given by to the MHD 
induction equation leads:

40

The axisymmetric mean-field dynamo equations

T → P production 

↓

𝑃 → 𝑇 production mechanism↔
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Note the following:

The production of a mean 
electromotive force proportional to the 
mean field is called the 𝛼-effect

Source of both A 
and 𝐵.

Viable 𝑇 → 𝑃
mechanism

→

Even if ⟨B⟩ is axisymmetric, the 𝛼-term in Equation will effectively 
introduce source terms in both the 𝐴 and 𝐵 equations, so that 
Cowling’s theorem can be circumvented.

Parker’s idea of helical twisting of toroidal fieldlines by the Coriolis 
force corresponds to a specific functional form for 𝛼, and so finds 
formal quantitative expression in mean-field
electrodynamics.
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Ω-effect

α-effect

The αΩ dynamo



Model ingredients
All kinematic solar dynamo models have:
(i)a solar structural model, 
(ii)a differential rotation profile, 
(iii)a magnetic diffusivity profile.
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Analytic formulae for the angular velocity Ω(𝑟, 𝜃) 
and magnetic diffusivity 𝜂(𝑟):

“turbulent” value 𝜂T in the envelope to a 
much smaller diffusivity 𝜂c in the 
convection-free radiative core Δ𝜂 =𝜂c/𝜂T.
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differential rotation profile:

“turbulent” value 𝜂T in the envelope 
to a much smaller diffusivity
𝜂c in the convection-free radiative 
core Δ𝜂 =𝜂c/𝜂T.



Calculating the 𝛼-effect and 
turbulent diffusivity

• Mean-field electrodynamics
• The task at hand is to calculate the 

components of the 𝛼 and 𝛽 tensor
• For an homogeneous, weakly, anisotropic 

turbulence:
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form commonly used in solar 
dynamo modelling
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In the kinematic regime (𝛼 and 𝛽 are independent of the 
magnetic field fluctuations):

where 𝜏c is the correlation time of the turbulent motions.

Order-of-magnitude estimates: 𝛼 ∼ Ωℓ and 𝜂T ∼ 𝑣ℓ

At the base of the solar convection zone:

In the literature: 



Turbulent pumping
• In cases where the turbulence is more strongly 

inhomogeneous.
• An additional effect comes into play: turbulent 

pumping
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Leaving the kinematic regime, it is expected that 
both 𝛼 and 𝜂𝑇 should depend on the strength of 
the magnetic field
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It remains an extreme oversimplification of the 
complex interaction between flow and field that 
characterizes MHD turbulence, but its wide usage 
in solar dynamo modeling.



Babcock-Leighton mechanism

• Joy’s law: Bipolar sunspots have tilts increasing with latitude (D’Silva 
&Choudhuri 1993)

• Their decay produces poloidal field (Babcock 1961; Leighton 1969)

Poloidal field produced here by
Babcock-Leighton mechanism
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Future development

• Mean field models have led to qualitative understanding, but 
detailed calculation of α etc. in dynamic regime is controversial, 
and getting more so! 

• Broad elements of basic processes (tachocline, pumping, 
buoyancy…) understood but more detailed calculations needed 
before useful quantitative information obtained.

• Better observations of cyclic behaviour in other stars with 
convective envelopes will help calibrate theories.

• A full-scale numerical model incorporating all relevant physics is a 
long way off; in the medium term any successful model will work 
by ‘wiring together’ detailed studies of the different regions.



CONCLUSIONS
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Solar cycles are produced by a flux transport 
dynamo involving the following processes:

• Toroidal field generation in tachocline by 
differential rotation.

• Poloidal field generation at surface by   
Babcock- Leighton mechanism.

•  Advection by meridional circulation.

Irregularities in cycles are primarily caused by fluctuations 
in the Babcock-Leighton process



CONCLUSIONS
• Remaining uncertainties about the nature of the deep-

seated magnetic field and the alpha effect have thus far 
prevented the formulation of a coherent model for the 
solar dynamo. 

Solar dynamo theory remains a vibrant field, fueled 
by fresh insights from helioseismology and 
increasingly sophisticated numerical simulations.
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