Neural networks as universal
approximators

A practical example of space weather
modelling



Aims of the lesson

* Introducing an artificial neural network
(NN) as a universal approximator.

« Convincing you that the NN Is a useful tool
for space weather (SW) modelling.
* Introducing Script_for NN.m

— A demonstration of use of NNs for space
weather modelling (and an exercise).



Preview of the lesson

Space weather and geomagnetic activity (geomagnetic storm)

Introducing the Hurbanovo Geomagnetic Observatory GPI SAS

Geomagnetic field (GMF) — main field, ring current, Earth’s magn. field deformed by solar wind— Earth’s magnetosphere
GMF elements X, Y, Z or D, H, |

CMEs cause geomagnetic storms

Geomagnetic storms on magnetograms (H component of GMF)

Indexes of the geomagnetic activity (Kp and Dst)

One single neuron — explanation

One single neuron — an example of using it in space weather (SW) modelling

Neural network with a hidden layer (a layer of hidden neurons) — description
Universal approximation theorem

Neural network with a hidden layer — examples of using it in space weather modelling

Geomagnetic activity forecasts based on solar wind observations in the L1 point
Geomagnetic activity forecasts based on the observations of solar energetic events
SEPs as an addidional input parameter for geomagnetic activity forecasts
Forecasting of SEPs based on the observations of solar energetic events

Training of neural networks

What will be the inputs and outputs of our example SW model — database for the example
What does the training of neural networks mean — training patterns

How many hidden neurons are needed? — validation patterns

A script for NN training in octave — description of Scenario_NN.m

Exercise — How to work with Script_for_NN.m

Working the example (by the students)

Summarizing the lesson



Space Weather definition

« Space weather is the physical and
phenomenological state of natural space
environments. The associated discipline aims,
through observation, monitoring, analysis and
modelling, at understanding and predicting the
state of the sun, the interplanetary and

planetary environments, and the solar and

non-solar driven perturbations that affect
them; and also at forecasting and nowcasting
the p« pOSS|bIe Impacts on biological and
technological systems.

* (Brussels, November 2007)
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Location of Hurbanovo GO
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The founder of
the Hurbanovo
Geomagnetic
Observatory,
Dr. Miklos
Konkoly Thege






















Geomagnetic field (GMF) elements

__________________________________________________
1

= X

For SW
research the
H component
IS important.



GMF at Hurbanovo as a vector

Present-day values of the GMF at Hurbanovo GO:

3° 30,67’
21 030 nT
64° 14,5
48 394 nT
43 586 nT

N 4 — T O
[



The GMF on the Earth

 The GMF on the poles is twice as high as
at the equator:

— approximately 70 000 nT at the poles
— approximately 35 000 nT at the equator

* The axis of the magnetic dipole and the
Earth’s spin axis form an angle cca 11°.




The main part of the GMF
IS produced by the
geodynamo (MHD
dynamo) which works in
the liquid Earth’s core.

This part of the GMF is
called the main field.
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Near the Earth surface the
GMF looks like a dipole
magnetic field.
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Artists rendition of solar wind and it's interaction with the earth's magnetic field.

Artist Rendition of Solar Wind
Created by: K. Endo

Photo Courtesy of Prof. Yohsuke Kamide National Geophysical Data Center
Reference: http://www.weather.nps.navy.mil/~psguest/EMEO _online/module3/solarwindbig.jpg [cited 2011-08-13]



http://www.weather.nps.navy.mil/~psguest/EMEO_online/module3/solarwindbig.jpg

Currents in the Earth’s
magnetosphere

CROSS-TAIL
CURRENT

BIRKELAND
CURRENT
SHEETS

M, : o PARTIAL

CNETOPAUSE RING CURRENT

Reference: en.wikipedia.org/wiki/Ring_current [cited: 2011-08-13]



Earth's ring current

The ring current system consists of
a band at a distance of 3t0 5 Rg.

(In the Earth’s equatorial plane.)

It produces a magnetic field which
IS opposite to the Earth's magnetic
field.

CROSS-TAIL
CURRENT

BIRKELAND
CURRENT
SHEETS

During a geomagnetic storm, the
number of particles in the ring
current increases. As a result there
is a decrease of the geomagnetic

field.
This can be observed directly at the %
GOs located near the Earth’s My PARTIAL
G
equator. (On H component of the AgJOR%JUTSsE RING CURRENT

GMF.)

The decrease of the H component
during a geomagnetic storm can be
interpreted as Dst index:

Dst<-100 nT ... intense storm
Dst<-200 nT ... super-intense storm



An approximate idea about the
cause of the geomagnetic storm

Reference: en.wikipedia.org/wiki/Magnetosphere [cited: 2011-08-13]



An approximate idea about the
cause of the geomagnetic storm

* An explosive process occurs on the Sun.
A CME Is shot to the Earth.

« 2—4 days: A cloud of the ejected solar
plasma with a complicated structure of the
Interplanetary magnetic field (IMF) moving
with the plasma reaches the Earth.

* Interaction with the Earth’s magnetic field
starts — the geomagnetic storm (ssc).



Geomagnetic storm on a magnetogram, H component
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A more complicated geomagnetic storm

21080

SC
S8C

7. - 11.Novemher 2004

21040

S8C

21000

SSC

20960 —

SSC

20920 - |

20850

Horizontal component of GMF [nT]|
e . 3.9

20720

20680 T ] ' ] g 1 ' T

2 3
Time [Days]



Indexes of the geomagnetic activity

Index Dst [nT] — Can be interpreted as the
decrease of H-component at ground-based
equatorial observatories

* Index K (0,1,2,...,9)
Kp=0 ... quiet geomagnetic field
Kp=9 ... extremely disturbed geomag. field

* Index Kp (0,,0,,1.,1,,1,,2,2,,2,,...,9.,9;)

« Other indexes: A, Ap, C, C9, 2Kp, AE, aa, PC,
etc.



Hortzontal commponent of GMF [nT]

Kp during a geomagnetic storm

21010

20900 —

20970 —

2090 —

209050 —

2009010 —

2Z0E00 —

208 70 —

20850 —

ZODIZF0 —

SEC

18 - 22 October 19958 |

Recowvery phase

e -

010

=\ Tmtial phase

=
Time [IDavs]

. 15 20 . 25
INme [3-hour intervals]|

35 40



Horizontal component of GMF [nT|

Kp during a complicated geomagnetic storm
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Artificial neural network

(A tool fol space weather
modelling)



PRESYNAPTICKA CAST

POSTSYNAPICKA CAST

A neural network
IS an
Interconnected
assembly of
simple processing
units, whose
functionality Is
loosely based on
the animal neuron.

Biological neurons



Diagram

Nucleus

of neuron
Cell Body
7\ _ Schwann cell
Dendrite (Myelin Sheath)

Axon

Nodes of

Ranvier

AXxON Reference:

http://en.wikipedia.orqg/
wiki/File:Neuronl.jpg
[cited: 2011-08-13]

Terminals



http://en.wikipedia.org/wiki/File:Neuron1.jpg
http://en.wikipedia.org/wiki/File:Neuron1.jpg

Artificial neuron

ulaglcill neuron
X, .
X, ... X; - Imputs ,

W . | .

.. Wg - weights
< -sensitivity threshold
Y -output
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—lo
X, | Y = f(g W, = e)

X, ... X5 - Inputs
W ... W, - weights f(z) = 1
1+ exp(-2)

© -sensitivity threshold
Y -output



Activation function (Logistic sigmoid function)

oD
h

A
|

/"

?

o



A logistic regression model for
predicting the occurrence of
Intense geomagnetic storms

Author: Nandita Srivastava

In: Annales Geophysicae, 23,
2969-2974, 2005



Coded values of dependent and independent values of the

logistic regression model (Nandita Srivastava, 2005)

Encoding

Names of variables  Type of variable Measured Parameter  Value Code
Dg; index Binary and dependent Dg; —200to —100nT 0
<—200nT 1

Halos Binary and independent Full halos 360° angular span 1
Partial >140° angular span 0

None -1

Location Binary and independent Location-bin Within £40° latitude +40° longitude 1
Outside +40° latitude +40° longitude 0

Association with Binary and independent Flare-bin Flares 1
other activity EPs 0

Initial Speeds
Southward IMF
Total IMF

Ram pressure

Numeric and independent
Numeric and independent
Numeric and independent

Numeric and independent

Value in kim 5_1

Value innT
Value innT

T N _2
Value in dynes cm™ -




Logistic regression model for classification Dst
Index to be [-200 nT, -100 nT] (intense storm) or
to be <-200 nT (superintense storm)

P=

1

(1

where

exp(—=2))

/Z = (—4.57 + 0.488 x Halo—bin + 0.51 x Flare—bin
+0.30x Location—bin + 7.44 xE—04 x V;
—0.24x B.—0.10x By 4+ 2394103.2x Pg).



Logistic regression model for classification Dst
Index to be [-200 nT, -100 nT] (intense storm) or
to be <-200 nT (superintense storm)

Halo cgee o
Artificial neuron
Flare - (Logistic regression model)
b
P %L
. "j‘/ % 1
Location f(z) = 1 =
0. +exp(-z
7/, . 1
44 intense / superintense
I{ 0.009 geomagnetic storm
b 0
[\W 4.57
L
B. s/ =
Ny =
’ <+
N
B &
T
B



Validation of the logistic regression model

Data-sets Observed Predicted % Correct
prediction

Super-Intense 16 10 62.5%

Training Intense 30 29 97%
Total 46 39 85%
Super-intense 4 2 50%

Validation Intense 5 5 100%
Total 9 7 77.7%




Neural network with a layer of
“hidden” neurons

H 28
y=f(L (X xw,-6)W-6,)
i=1 i=1




Neural netwok can be used as a universal approximation tool

UNIVERSAL APPROXIMATION
THEOREM



Assumptions:

* F iIs a continuous function which is transforming
n-dimensional space to the open interval (0O, 1)
F: R"— (0, 1)
Where y = F(X) = F (Xq, X5,..., X;,).

* Training set A, contains r points from n-dimen-
sional space R"

Atrain - {Xl’ XZ!"'! Xr}
 f: R— (0, 1) Is a continuous and monotonically-

iIncreasing function which satisfies the
asymptotic conditions f(—«) = 0 and f(«) = 1.



Statement:

For arbitrary ¢ . there 1s a function
G(7) = f(Zio) o f(0; + 0;.7))
satisfying

Shot [F' (k) — G(a3)| < e

Here «;, 0; are real coefficients and w; are
the vectors containing n real components.



From the theorem follows that:

» Having a sufficient number
of the hidden neurons, the
neural network Is able to
approximate any function
which is defined by the set
of training patterns.



Neural network In accordance with
the universal approximation theorem

| H 28 | |
y = FO A xw,- 61 -K)




Real time Kp predictions from
solar wind data using artificial
neural networks

Authors: Fredrik Boberg, Peter Wintofft,
and Henrik Lundstedt

Phys. Chem. Earth (C), Vol. 25, No. 4,
pp. 275-280, 2000



An expert network specialized in making one-step-ahead
predictions of Kp index during geomagnetically quiet periods.

n(t)

Kp(t+3h)
V(1) °

B,(1)

10 hidden neurons



An expert network specialized in making one-step-ahead
predictions of Kp index during geomagnetic storm periods.

n(t)
=S Kp(t+3h)

V(1)
V(t-3h)

B,(t)
B(t-3h)—

10 hidden neurons



Fig.1: Time series of solar-wind parameters,
predlcted Kp s as weII as observed Kp S

__ 10}

B
I
e
=)
L

} ] e J I
0 12 24 36 48 60 72

o

n (cm™)

V (km/s)

DDDDGDDDHHHDDDDDmDDDQDDDDG |

uuunuuuumﬂﬂﬂﬂﬂﬂUUHHUHUHUH
Dmm@muﬂlnliﬂﬂﬂﬂlliﬂﬂﬂﬂﬂj

hours




Fig.2: Time series of solar-wind parameters,
predicted Kp s as well as observed Kp's
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Geoeffectiveness of some solar
events modelled using artificial
neural network



severe

weak

intermediate

non-disturbed

+-classB/C
x - class M
O - class X

Scatter
graph of X-
ray events
associated
with sweep-
frequency
radio bursts
(RSP) of
type Il (shock
wave) and
type IV
(plasmoid)
observed on
the solar disc
in the period
1996-2004,
classified
according to
the level of
their
geoeffective-
ness.



severe

weak

+-classB/C

x - class M

intermediate

non-disturbed

- class X

Geoeffective
X-ray flares
were those
which were
accompanied
with RSP 1I/1V
and they
occurred close
to the centre of
the solar disk.



Reference

SOLAR ENERGETIC EVENTS IN THE YEARS 1996-2004. THE
ANALYSIS OF THEIR GEOEFFECTIVENESS

J. Bocunicek!. P. HEpAL. F. VALACH?

Institute of Geophysics AS CR., 141 31 Prague 4, Czech Republic (jboch@ig.cas.cz)

Geomagnetic Observatory, Geophysical Institute SAS, 947 01 Hurbanovo, Slovak Republic
(fridrich@geomag.sk)

[t

Received: January 9, 2007; Revised: April 5, 2007; Accepted: May 11, 2007

Stud. Geophys. Geod., 51 (2007), 439447
2007 StudiaGeo s.r.0., Prague




Geoeffectiveness of some solar events
modelled using artificial neural network

Heliographic
latitude

»

Heliografphi Probability
longitude of a
geomagnetic
XRA class
(B/C, M. or X) response
Type of RSF *
(11 or/and 1V)

Hidden
neurons



XRA class B/C, RSP || XRA class B/C, RSP lI&IV

XRA class M, RSP I XRA class M, RSP &IV

XRA class X, RSP I XRA class X, RSP |I&IV

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

XRA class BIC, RSP IV

XRA class M, RSP IV

XRA class X, RSP IV

Regions on the
solar disc where
the geoeffective
XRA events
occur.

Published in:

F. Valach, P. Hejda, J.
Bochnnicek,

GEOEFFECTIVENESS OF
XRA EVENTS ASSOCIATED
WITH RSP Il AND/OR RSP
IV ESTIMATED USING THE

ARTIFICIAL NEURAL
NETWORK,

Stud. Geophys. Geod.,
51 (2007), 551-562.



Forecasts of “after-the-fact” geomagnetic responses.
All classes of XRA accompanied by
RSP Il and/or IV, observed in 1996-2004, are considered.

Number of
observed
geomagnetic
responses

Number of
predicted
geomagnetic
responses

Number of
false alerts

93

37
(40 %)

14




“After-the-fact” forecasts of geomagnetic
responses for events from the years 1996-2004,
classified by RSP type.

Number of Number of Number of
observed predicted false alerts
geomag. geomag.
responses responses
RSP |40 6 (15%) |2
RSP 11 &IV |41 23 (56%) |7
RSPIV |12 8 (67%) |5




“After-the-fact” forecasts of geomagnetic
activity divided by XRA class and RSP type.

Type of
RSP

XRA class

Number of
observed
responses

Number of
predicted
responses

Number of
false
alerts

&IV B/C 4 0 (0 %) 0
&IV M 22 10(45%) | 5
&IV X 15 13(87 %) | 2




Reference

GEOEFFECTIVENESS OF XRA EVENTS ASSOCIATED WITH RSP 11
AND/OR RSP IV ESTIMATED USING THE ARTIFICIAL NEURAL
NETWORK

F.Varacu!, P. HEmpaZ, J. BOCHNICEK?
1 Geomagnetic Observatory, Geophysical Institute SAS, 947 01 Hurbanovo, Slovak Republic
(fridrich@geomag.sk)

2 Institute of Geophysics AS CR, Boc¢ni 11/1401, 141 31 Prague 4, Czech Republic
(ph@ig.cas.cz, jpboch@ig.cas.cz)

Received: January 9, 2007, Revised: July 11, 2007; Accepted: August 9, 2007

Stud. Geophys. Geod., 51 (2007), 551-562
© 2007 StudiaGeo s.r.0., Prague




We added information about SEPs (HEPF > 10 MeV) to the
geomagnetic activity forecasting scheme (beside information on
solar flares). This improved the forecasts.

Input Hidden Scheme of the Neural
2 Neurons Neurons Network Model
(p Output
. Neuron )
| Geomagnetic
- / o Response
Yes /N
RSP 11/ IV / . =
XRA Class Scheme of a Single Neuron
1
Alog @ 3 ;,_/(‘_’
.wj,ﬂ




Reference

SPACE WEATHER, VOL. 7, S04004, doi:10.1029/20085W000421, 2009

Article

Solar energetic particle flux enhancement as a
predictor of geomagnetic activity in a neural
network-based model

F. Valach,! M. Revallo,” ]. Bochnicek,” and P. Hejda’

Received 26 June 2008; revised 31 October 2008; accepted 22 December 2008; published 16 April 2009.




Forecasts of SEP events

Using Dynamic Networks



Input parameters (Day-by-day data):

« X-ray flares:

— The class of the most significant XRA (only those
originated near the centre of the solar disk + 40°)

— RSP type Il and/or type IV

* Full or partial halo CMEs:
— Linear speed of CME (of the most significant CME)
— Angular width of CME (of the most significant CME)
— Position angle of CME (of the most significant CME)



Variables in the neural network model
(Lin. filter / Layer recurrent network):

Input variables Output
_ _ _ variable
Information about full or partial | Information about X-ray
halo CMEs flares (XRAS)
1. Position angle of the most important 5. The class of the most important X- Fluxes of
CME (the one with the greater width was | ray flare (XRA Class) observed close protons
considered to be more important). to the centre of the solar disk (40°). with the
energies
2. The greatest width of the CME which 6. The information about type Il radio exceeding
. : : 10 MeV
was observed this particular day. burst (RPS Il) accompanied the X-ray
measured
flare. :
in the
libration
3. The linear speed of the most 7. The same for type IV radio burst point L1.

important CME

(RSP V).

4. The number of CMEs which were
observed during the given day.

8. The number of X-ray flares which
were observed close to the centre of
the solar disk.




Neural networks used for SEP modelling

Linear filter Layer recurrent network
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SEP Flux [pfu]

Observed and forecast fluxes of SEP during
test period 13/08/2003 — 26/11/2005
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Reference

Acta Astronautica
Article in Press, Corrected Proof - Mote {o users

doi 1010164, actaastro. 2011.06.003 | Howe to Cite or Link Using L1
47 Permizzions & Reprint=

Predictions of SEP events by means of a linear filter and layer-recurrent neural
network

Fridrich Valach® ™. u‘ Milo$ Revallo®: u‘ Pavel Hejida™: - and Josef Bochnicek®: -
3 Geormadgnetic Observatory, Geophysical Institute, Slovak Acaderny of Sciences, Komarfianska 108, 947 01 Hurbanowo, Slovakia
b Geophysical Institute, Slovak Academy of Sciences, Bratislava, Slovakia

" Institute of Geophysics, Acaderny of Sciences of the Czech Republic, Prague, Czech Republic

Received 3 January 2011, revised 23 mMay 2011, accepted 1 June 2011, Availakle online 22 June 2011,

Abstract

Solar energetic paricle (SEP) modelling has gained great interest in the community, specifically in connection with the safety of crewes and the protection of
technological systerms of spacecraft situated outside the shielding of Earth's magnetosphere. Two models for the prediction of SEF events are presented in
thiz paper. The models are hased on a linear filter and on a special type of dynamic arificial neural network known as the layer-recurrent nedral netwark. In
thiz wiork they use as input the following parameters: the X-ray flare class for flares originating close to the centre ofthe =salar disk; observed type I or IV
radio bursts: and aofthe pasition angle, width, and linear speed of ohserved full ar padial halo CMEs. The models are designed to provide forecasts of
proton fluxes with energies exceeding 10 Mey atthe L1 libration point.

Highlights

# The maodels based on a linear filter and a layer-recurrent neural netwaork, » [nformation an s=-ray flares, radio bursts, and CWMEs were used as input
parameters. » Forecasts of protan fluxes with energies exceeding 10 Mel atthe L1 libration paint. » Practical recipes far alert announcements far critical
proton fluxes were proposed.

Keywaords: Coronal mass ejection; x-ray flare; Solar energetic particles; Adificial neural netwark



Exercise
The task is:

Train the neural network to predict Kp index during a
geomagnetically disturbed period from solar wind data.



You are asked to train an expert network specialized in
making one-step-ahead predictions of Kp index during
geomagnetic storm periods.

(Input parameters: The solar-wind parameters of the two 3-hour intervals prior
to the forecast Kp interval.)

n(t)

—3h
=S Kp(t+3h)

V(1)
V(t-3h)

B,(1)

Unknown number
of hidden neurons.

Note: This example is inspired by the paper of Boberg, Wintoft, and Lundstedt (2000).



Data at your disposal:

* Quantities:

— 3-hour mean values of solar wind parameters:
« B, component of the IMF
 Density of protons
 Velocity of solar wind

— Kp index
« Geomagnetic storms:

May 1997, May 1998, June 1998, August 1998,
September 1998, October 1998, November 2004



Patterns for the neural network

* Neural networks learn from training
patterns.

A pattern has two parts:
— Inputs that enter the NN at the same time.
— Output which Is expected to be obtained.
» Our database — files containing 7 columns:
* Inputs: Bz(t-1), n(t-1), V(t-1), Bz(t), n(t), V(t)
 Desired output (target): Kp(t+1)
- Every row represents one training pattern.



J & Lister - [c\0Octave\Pracovny_adresariNNs_UnivApproxitra.dat] | _ File

Subaor  Editacia  MoZnosti  Paomocnik

| 3.22 417.48 361.80 382 . 07 1.7 tra.dat
8.25 12.28 382._07 399 _89 1 -
2.83 7.55 399.89 489 .55 2 contains
1.73  7.92 4P9.55 433 .98 1.3 training
3.78 B.23 433.98 450._40 1.7
2.51 8.24 450.48 u71.31 4.3 patterns.
h.61  5.57 471.31 559 _69 3.3
6.86 14.31 559.49 £71.40 5
Q.48 11.72 571.408 636 .97 n.7
-8.83 8.93 636.97 63412 6
-2.28 5.52 634.12 645 22 6.7
—9.13  4_48 645_22 606 .18 6
~18.36 9.13 686.18 50171 5 tra.dat
-6.81 6.54 591.71 L7505 6 :
~4_17 18.45 575._65 chl 30 & consists
-3.33 23.17 G5h4_30 517 .46 G of the
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The algorithm for the training
the neural network

» Backpropagation (BP) algorithm based on
the generalized delta rule improved with a
momentum term.

* Learning parameters that has to be set up:
— Learning rate — It affects the speed of learning.

— Momentum term — It prevents sticking in a
local minimum of a function... (]).

 The aim Is to reach a global minimum of a
function describing the error between the
actual and desired NN outputs.



BP algorithm written in Octave

function[w,dw,ww,dvww,th,dth]=Learn_HH{matrix of inputs,vector of targets,w,du,uww,

dww,th,dth,alpha,lambda})

pv=size{matrix of inputs){1);

H=1length{th};

for p=1:pv;
¥=matrix of inputs(p,:};
t=vector of targets{p);
a=x*u-th;
a=1../(1+exp(-a));
aa=a=yy’ ;
da=1/{1+exp(-aa));
dd=aa=*{1-aa)={t—-aa);
dww=alphaxdd=a+]lambda=dww;
=y dung ;
d=a={1-a) " =dd>uyuw;
dw=alpha=(x"'=d)+lambda=dw;
w=y+du;
dth=alpha=d={-1})+lambda=dth;
th=th+dth;

endfor

endfunction



Why Octave?

Octave Is a free software (freeware).
Multiplatform (Windows, Linux, etc.)

The syntax of the Octave language Is
similar to the Matlab’s syntax, which is
widely used.

Octave enables data visualization.
Octave works with matrices.



How many hidden neurons do you need?

At the beginning you will not know how many hidden
neurons (H) will be needed.

You must try to train several different NNs, with different H,
and then you will choose which of them yields the best
results. (Using the training patterns.)

In order to find which NN is the best, you need to evaluate
a test, for which you will use patterns which were not used
for training. (Validation patterns.)

The structures of both the training and validation patterns
have to be the same, i.e.:

 Inputs: Bz(t-1), n(t-1), V(t-1), Bz(t), n(t), V(t)
* Desired output (target): Kp(t+1)
The name of the file with validation patterns is “val.dat”.



& | jster - [cAOctavelPracovny_adresariNNs_UnivApproxival.dat] g@g|
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Why Is It so important to have a
reasonable number of hidden neurons?

* Few hidden neurons: The model is too simple
and inadaptable. It is not enough for describing
complicated relations.

 Too many hidden neurons: The model
reproduces the training patterns very literally.
However, the NN cannot generalize from
training patterns!

(over-sizing)




An analogy with curve fitting:
Too simple model (= few hidden neurons)



An analogy with curve fitting:
Over-fitting (= over-sizing the hidden layer)

-
i |




An analogy with curve fitting:
Well fitted (= reasonable number of hidden neurons)




How many adaptation steps
(iterations) has to be done?

During the training, the training patterns are presented to
the network repeatedly. Every time the weights and
sensitivity thresholds are slightly improved (adapted).
When the training has to be stoped?

Few adaptation steps: The NN is learned poorly. There
are great differences between actual and desired outputs of
the NN.

Too many adaptation steps: The model reproduces the
training patterns very literally. However, the NN cannot
generalize from training patterns!

(over-learning)

Again, the problem can be solved performing a test with
validation patterns.




Training and validation tests’ results as a function of the number of adaptation steps

Amount of hidden neurons: 7 Oplimal number of adaptation steps = 25
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The core of a program for training neural networks

Scenario NN.m for Octave



Walking through Scenario. NN.m

& |ister - [c\OctavelPracovny_adresariNNs_UnivApproxiScenario_ NN.m] E] [E E|
Subor  Editcia  MoZnosti - Pomocnil 16 %

# A scenario for training the neural network. .
% Author:

% Fridrich Valach, Geophysical Institute SAS, Geomagnetic Observatory Hurbanowvo,

Slovakia

% E-mail: fridrich@Egeomag.sk

% 2811 ISWI-Europe Summer School in Space Science
% August 21-27, 2611, High Tatras, Slovakia

# Loading training and validation patterns:
load tra.dat
load wval.dat

Loading training and
validation patterns.

% Detecting the number of input neurons:
n_of_inputs=size(tra){2)-1;

matrix_inputs_tra=tra{:,1:n_of_inputs);
vector_ targets tra=tra{:,n_of inputs+1);
matrix_inputs wval=val{:,1:n_of inputs);
vector_targets_wal=val{:,n_of_inputs+1);

% Input data normalization (Mot necessary, but recommended.):

for n=1:n_of_inputs

matrix_inputs tra{:,n)={tral:,n).-mean{traf:,n))})./std{tral:,n));
endfor
for n=1:n_of_inputs

matrix_inputs wval{:,n)={val{:,n).-mean{traf{:,n)})./std{tral:,n));
endfor




Walking through Scenario. NN.m

OIMNES

& |ister - [cAOctave\Pracovny_adresariNNs_UnivApproxiScenario NN.m]

EBX]

33 %

vector targets tra=traf{:,n_of_inputs+1}; -
matrix_inputs wal=val{:,1:n_of inputs);
vector_targets_val=val{:,n_of_inputs+1);

4 Sibor Editacia  MoZnosti Pomocnik

% Input data normalization (Hot necessary, but recommended.):

for n=1:n_of_inputs

matrix_inputs tra(:,n)=(tra(:,n).-mean{tra:,n)})./std{tra{:,n}); II?I)I!Z dﬂtd
endfor

for n=1:n_of_inputs y
matrix_inputs wval{:,n)={val{:,n}.-mean{tral{:,n}))./std{tral:z,n)); I?{}IJHIHIIMHII{}I/L

endfor

% Targets {or NN outputs) have to be between 8 and 1:

vector_targets_tra=vector_targets_tras?; ()Iit])lit flﬂta ,‘S‘Cﬂli]fi‘]
vector targets val=vector targets vals9; . “
to interval (0,1).

d # Setting the training parameters:

% Setting the value of the learning rate:

4 "Input a value of the learning rate:'

4 alpha=input(’'{Recommended is value around .1 .} ... "};
4 % Setting the value of the momentum term:

4 "Input a value of the momentum term:’

lambda=input(' {Recommendation between .5 - .7 .} ... '};

% Setting the number of hidden neurons:
H=input('Input the number of neurons in the hidden layer: '};

% Setting the number of adaptation steps {iterations) in one training cycle: 3z
o |' o _ .




Walking through Scenario. NN.m
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& |ister - [c\Octave\Pracovny_adresariNNs_UnivApproxiScenario_NN.m] g@] E|

Stbar  Editdcia MoZnoskti Pomocnik

vector targets tra=vector targets tras9;
vector_targets wval=vector_targets vals9;

#t Setting the training parameters:

% Setting the value of the learning rate:

*Input a value of the learning rate:’

alpha=input{’ {Recommended is walue around .1 .} ... '};
% Setting the value of the momentum term:

*Input a value of the momentum term:®
lambda=input{’'{Recommendation between .5 - .7 .} ... '});

1 -
Setting
% Setting the number of hidden neurons: k- tttr;?{’j
H=input('Input the number of neurons in the hidden layer: ')};

------------------------------------------------------------- ' the training

% Setting the number of adaptation steps (iterations) in one training cycle:

iterations_in_a cycle=1; . > T
o - parameters
% Setting the maximum number of training cycles:

max_no_of cycles=input{"Input the maximal number of adaptation steps: "'});

“How many more adaptation steps will be done after reaching”
max_for_how many more=input{" the best {up to now) results for validation?

---------- B

% Random initiating the weights and sensitivity thresholds:
[w,dw,wuw,dww,th,dth]=2ero_shots{matrix_inputs tra,H);

[HHout ]=0utput_of HH{w,uw,th,matrix_inputs tra);

—

46 o




Walking through Scenario. NN.m

& Lister - [c\0ctavelPracovny_adresariNNs_UnivApproxiScenario_ NN.m]

Al Sdbor  Editacia  MoZnosti - Pomocnik 55 %

max_no_of cycles=input{"Input the maximal number of adaptation steps: ")}; P
ol T T T T '

“How many more adaptation steps will be done after reaching”
max_for_how many more=input{" the best (up to now) results for validation?

---------- )i

The weights and
sensitivity thresholds

% Random initiating the weights and sensitivity thresholds:
[w,dw,ww, duw,th,dth]=2ero_shots{matrix_inputs tra,H);

| [HHout]=0utput of HH{w,ww,th,matrix inputs tra);

cc_tra=corrcoef{HHout ,vector_targets_tra'}; LFs 7 Il
[HHout ]=Dutput_of HH{w,ww,th,matrix_inputs val); are JS'LI r{} sSma
cc_val=corrcoef {HHout ,vector_targets val'};

# Correlation coefficients are used in order to evaluate the validation. f'ﬂ]’f{l{)”f jfliﬁfbe’f'j‘.

cc_val max=cc_val;
wBest=w; wwBest=ww; thBest=th;
counter=08; counterBest=8;

=

counter_how _many_more=8;
info_about cc=[8 cc_tra cc_wval];

#t We will draw a picture during the training.

#t The picture will show correlation coefficients - comparing targets {desired
outputs) with

#t the current neural-network outputs for both training and validation databases.
newplot

& o

i

Z.‘ % First values in the picture are for the randomly initiated weights and
sensitivity thresholds: K.
- Fa = - » = » 3 a o L] = » » - 3 S » ey PR T P » » Py




‘Walking through Scenario_NN.m

& |ister - [cOctave\Pracovny_adresariNNs_UnivApproxiScenario NN.m]

91 e

epeatedly adapting
_ . weights and sensitivity

for c=1:iterations_1in_a_cycle *

% Training. That means an adaptation of the weights as well as the sensitivity ﬂ}‘,}“ﬂfﬂ!{}fdﬂ,
thresholds:
[w,dw,ww,dwu,th,dth]=Learn_HH{matriz_inputs_tra,vector_targets_tra,w,duw,ww,duvu,t

h,dth,a pha,lanbda); Correlation between
. L desired and actual
counter=counter+iterations_1in_a_cycle;

% Calculating the neural network outputs for the training patterns: outputs {}fﬂ;g NN

[HHout ]=0utput_ of HH{w,ww,th,matrix inputs_tra); .

% Comparing the HH outputs with the desired outputs (targets): IAY L‘ﬂfﬂﬂfﬂfedfﬂr

cc_tra=corrcoef (HHout ,uector_targets tra'); . .

% Calculating the neural network outputs for the validation patterns: both Ii‘"ﬂﬂﬂng and

[HHout ]=0utput_of HH{w,ww.,th,matrix inputs val); . .

% Comparing the MM outputs with the desired outputs (targets): 1*Hflffﬂﬁﬂﬂpﬂﬁt’ﬁm+

cc_val=corrcoef (HHout ,uector_targets wal'};

% Recording the information about correlation coefficients for training and
validation:

info_about cc=[info_about cc;counter cc_tra cc_wval];

Sibor  Editacia  MoZnosti  Pomocnik

for cc=1:max_no_of _cycles

The best weights and
sensitivity thresholds

# Finding the best weights and sensitivity thresholds, for which the
validation error is minimal:

if {(cc_wvalrcc _val max) :
cc_val max-cc_val; are stored during the
wBest=w; wwBest=uww; thBest=th; i‘fTHfoH.'g p?‘ﬂft’S&

counterBest=counter;
counter_how _many more=8;

else
counter_how _many_more=counter_how _many_more+1;
if (counter_how many more==max_for_how many more+1) o




Walking through Scenario. NN.m

& |ister - [c:\Octave\Pracovny_adresariNNs_UnivApproxiScenario_NN.m]

A sibor  Editacia  MoZnosti  Pomocnik 97 %
] [HHout ]=0utput_of HH{w,ww,th,matrix_ inputs tra); ~
4 % Comparing the HH outputs with the desired outputs (targets):

cc_tra=corrcoef{HHout ,vector_targets_tra'};

% Calculating the neural network outputs for the validation patterns:
[HHout ]=0utput_of HH{w,ww,th,matrix_inputs wal};

% Comparing the HH outputs with the desired outputs {targets):

E cc_val=corrcoef{HHout ,vector_targets wal'};

] % Recording the information about correlation coefficients for training and
J validation:

| info_about cc=[info_about cc;counter cc_tra cc_wval];

# Finding the best weights and sensitivity thresholds, for which the
4 validation error is minimal:

if {cc_wval>cc_val max) I
cc_val max=cc_wal; ] > JrOY I ff o l >

wBest=w; wwBest=ww; thBest=th; ft IL I LLSII tﬁs {}} t 16
b counterBest=counter;

Counter how nany nore-0; validation test are
counter_how_many_more=counter_how _many_more+1; II{}I if?{[)f'{?1)ift§f, riif?

if {counter_how many more==max_for_how many more+1)
training is terminated.

‘The training of the neural network has been finished.’
break;

endif
endif

J # Updating the picture:

-~

plot{info_about cc{:,1),info_about cc(:,3)','-"b");
plot{info_about cc{:,1),info_about cc{:,2)"," -»*r"');
pause{1}

endfor

i i . e . M .- o . &




Some complementing scripts:

Comparing the forecast Kp's with the observed
Kp’s. (You can compare the forecasts with the
observed values visually or using CC, RMSE,
mean absolute error, or median of absolute
errors.)

Saving the figures produced during the training.
Saving the parameters of the neural network.
Performing a final test.

There Is a script named Script_for NN.m, which
brings together all the scripts you need to use.



The exercise IS:

 Traln a neural network.

* Forecast Kp indexes for the geomagnetic

storms of August 1998, October 1998, and
November 2004.

* (Use Script_for NN.m for this purpose.)



Now, It IS the time to run
Script_for NN.m

 How to do It:
— Start up octave.

— Change the working directory writing, e.g.,
cd ‘c:\\Octave\\HighTatras’

— Write Script_for NN to the octave’s
command line and press Enter.

— Follow the instructions which will appear

running the program.
* |f some problem occurs, please, ask me or my assistant for help.



Satisfying results of the test for the training patterns

Training CC=0.7665 RMSE=4.4375 Mean absolute error =4.1211 Median of absolute errors =4.103
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Satisfying results of the test for the validation patterns

Validation test CC=0.78052 RMSE=3.4378 Mean absolute error =3.1383 Median of absolute errors =2.9438
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Please send me your results.

* When you finish the work with Script_for NN,
you will have three files named

“Results _for Aug98.dat”,

“Results for Oct98.dat” and

“Results for NovO4.dat”, respectively, created

In your working directory.

* Please send me these files to my e-mail address
fridrich@geomad.sk.

* Write me also how many hidden neurons did
you find to be optimal.

* | will summarize the results. — You will find the summary

on the billboard in the entrance-hall tomorrow morning.


mailto:fridrich@geomag.sk

Conclusions

* A simple neural network with the layer of
hidden neurons was introduced.

* | convinced you (I hope so) that the neural
network Is a usefull tool for space weather
modelling.

« Script_for NN.m was introduced and you

tried to train a neural network by
yourselves using It.




Thanks for your attention



